Brons, I. G. et al. Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature448, 191–195 (2007). ArticleCASPubMed Google Scholar
Tesar, P. J. et al. New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature448, 196–199 (2007). ArticleCASPubMed Google Scholar
Hayashi, K., Lopes, S. M., Tang, F. & Surani, M. A. Dynamic equilibrium and heterogeneity of mouse pluripotent stem cells with distinct functional and epigenetic states. Cell Stem Cell3, 391–401 (2008). ArticleCASPubMed Google Scholar
ten Berge, D. et al. Wnt signaling mediates self-organization and axis formation in embryoid bodies. Cell Stem Cell3, 508–518 (2008). ArticleCASPubMed Google Scholar
Sato, N., Meijer, L., Skaltsounis, L., Greengard, P. & Brivanlou, A. H. Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat. Med.10, 55–63 (2004). ArticleCASPubMed Google Scholar
Chen, B. et al. Small molecule-mediated disruption of Wnt-dependent signaling in tissue regeneration and cancer. Nat. Chem. Biol.5, 100–107 (2009). ArticleCASPubMedPubMed Central Google Scholar
Lustig, B. et al. Negative feedback loop of Wnt signaling through upregulation of conductin/axin2 in colorectal and liver tumors. Mol. Cell Biol.22, 1184–1193 (2002). ArticleCASPubMedPubMed Central Google Scholar
Anton, R., Kestler, H. A. & Kuhl, M. β-catenin signaling contributes to stemness and regulates early differentiation in murine embryonic stem cells. FEBS Lett.581, 5247–5254 (2007). ArticleCASPubMed Google Scholar
Kemp, C., Willems, E., Abdo, S., Lambiv, L. & Leyns, L. Expression of all Wnt genes and their secreted antagonists during mouse blastocyst and postimplantation development. Dev. Dyn.233, 1064–1075 (2005). ArticleCASPubMed Google Scholar
Wang, Q. T. et al. A genome-wide study of gene activity reveals developmental signaling pathways in the preimplantation mouse embryo. Dev. Cell6, 133–144 (2004). ArticleCASPubMed Google Scholar
Haegel, H. et al. Lack of β-catenin affects mouse development at gastrulation. Development121, 3529–3537 (1995). CASPubMed Google Scholar
Ohsugi, M. et al. Expression and cell membrane localization of catenins during mouse preimplantation development. Dev. Dyn.206, 391–402 (1996). ArticleCASPubMed Google Scholar
De Vries, W. N. et al. Maternal β-catenin and E-cadherin in mouse development. Development131, 4435–4445 (2004). ArticleCASPubMed Google Scholar
Nichols, J., Chambers, I., Taga, T. & Smith, A. Physiological rationale for responsiveness of mouse embryonic stem cells to gp130 cytokines. Development128, 2333–2339 (2001). CASPubMed Google Scholar
Stambolic, V., Ruel, L. & Woodgett, J. R. Lithium inhibits glycogen synthase kinase-3 activity and mimics wingless signalling in intact cells. Curr. Biol.6, 1664–1668 (1996). ArticleCASPubMed Google Scholar
Doble, B. W. & Woodgett, J. R. GSK-3: tricks of the trade for a multi-tasking kinase. J. Cell Sci.116, 1175–1186 (2003). ArticleCASPubMed Google Scholar
Tighe, A., Ray-Sinha, A., Staples, O. D. & Taylor, S. S. GSK-3 inhibitors induce chromosome instability. BMC Cell Biol.8, 34 (2007). ArticlePubMedPubMed Central Google Scholar
Acevedo, N., Wang, X., Dunn, R. L. & Smith, G. D. Glycogen synthase kinase-3 regulation of chromatin segregation and cytokinesis in mouse preimplantation embryos. Mol. Reprod. Dev.74, 178–188 (2007). ArticleCASPubMed Google Scholar
Kelly, K.F. et al. β-catenin enhances Oct-4 activity and reinforces pluripotency through a TCF-independent mechanism. Cell Stem Cell8, 214–227 (2011). ArticleCASPubMedPubMed Central Google Scholar
Nichols, J., Silva, J., Roode, M. & Smith, A. Suppression of Erk signalling promotes ground state pluripotency in the mouse embryo. Development136, 3215–3222 (2009). ArticleCASPubMedPubMed Central Google Scholar
Gardner, R. L. & Brook, F. A. Reflections on the biology of embryonic stem (ES) cells. Int. J. Dev. Biol.41, 235–243 (1997). CASPubMed Google Scholar
Cole, M. F., Johnstone, S. E., Newman, J. J., Kagey, M. H. & Young, R. A. Tcf3 is an integral component of the core regulatory circuitry of embryonic stem cells. Genes Dev.22, 746–755 (2008). ArticleCASPubMedPubMed Central Google Scholar
Tam, W. L. et al. T-cell factor 3 regulates embryonic stem cell pluripotency and self-renewal by the transcriptional control of multiple lineage pathways. Stem Cells26, 2019–2031 (2008). ArticleCASPubMedPubMed Central Google Scholar
Yi, F., Pereira, L. & Merrill, B. J. Tcf3 functions as a steady-state limiter of transcriptional programs of mouse embryonic stem cell self-renewal. Stem Cells26, 1951–1960 (2008). ArticleCASPubMedPubMed Central Google Scholar
Kielman, M. F. et al. Apc modulates embryonic stem-cell differentiation by controlling the dosage of β-catenin signaling. Nat. Genet.32, 594–605 (2002). ArticleCASPubMed Google Scholar
Hao, J., Li, T. G., Qi, X., Zhao, D. F. & Zhao, G. Q. WNT/β-catenin pathway up-regulates Stat3 and converges on LIF to prevent differentiation of mouse embryonic stem cells. Dev. Biol.290, 81–91 (2006). ArticleCASPubMed Google Scholar
Ogawa, K., Nishinakamura, R., Iwamatsu, Y., Shimosato, D. & Niwa, H. Synergistic action of Wnt and LIF in maintaining pluripotency of mouse ES cells. Biochem. Biophys. Res. Commun.343, 159–166 (2006). ArticleCASPubMed Google Scholar
Singla, D. K., Schneider, D. J., LeWinter, M. M. & Sobel, B. E. wnt3a but not wnt11 supports self-renewal of embryonic stem cells. Biochem. Biophys. Res. Commun.345, 789–795 (2006). ArticleCASPubMed Google Scholar
Williams, R. L. et al. Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature336, 684–687 (1988). ArticleCASPubMed Google Scholar
Smith, A. G. et al. Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature336, 688–690 (1988). ArticleCASPubMed Google Scholar
Hsieh, J. C., Rattner, A., Smallwood, P. M. & Nathans, J. Biochemical characterization of Wnt–frizzled interactions using a soluble, biologically active vertebrate Wnt protein. Proc. Natl Acad. Sci. USA96, 3546–3551 (1999). ArticleCASPubMedPubMed Central Google Scholar
Willert, K. et al. Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature423, 448–452 (2003). ArticleCASPubMed Google Scholar
Mikels, A. J. & Nusse, R. Purified Wnt5a protein activates or inhibits β-catenin–TCF signaling depending on receptor context. PLoS Biol4, e115 (2006). ArticlePubMedPubMed Central Google Scholar
Ying, Q. L., Stavridis, M., Griffiths, D., Li, M. & Smith, A. Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture. Nat. Biotechnol.21, 183–186 (2003). ArticleCASPubMed Google Scholar
Lamprecht, M. R., Sabatini, D. M. & Carpenter, A. E. CellProfiler: free, versatile software for automated biological image analysis. Biotechniques42, 71–75 (2007). ArticleCASPubMed Google Scholar