COPII and the regulation of protein sorting in mammals (original) (raw)
Barlowe, C. et al. COPII: a membrane coat formed by Sec proteins that drive vesicle budding from the endoplasmic reticulum. Cell77, 895–907 (1994). ArticleCASPubMed Google Scholar
Orci, L. et al. Mammalian Sec23p homologue is restricted to the endoplasmic reticulum transitional cytoplasm. Proc. Natl Acad. Sci. USA88, 8611–8615 (1991). CASPubMedPubMed Central Google Scholar
Bannykh, S. I., Rowe, T. & Balch, W. E. The organization of endoplasmic reticulum export complexes. J. Cell Biol.135, 19–35 (1996). CASPubMed Google Scholar
Goldberg, J. Structural basis for activation of ARF GTPase: mechanisms of guanine nucleotide exchange and GTP-myristoyl switching. Cell95, 237–248 (1998). CASPubMed Google Scholar
Huang, M. et al. Crystal structure of Sar1-GDP at 1.7 Å resolution and the role of the NH2 terminus in ER export. J. Cell Biol.155, 937–948 (2001). CASPubMedPubMed Central Google Scholar
Bi, X., Corpina, R. A. & Goldberg, J. Structure of the Sec23/24-Sar1 pre-budding complex of the COPII vesicle coat. Nature419, 271–277 (2002). CASPubMed Google Scholar
Rao, Y. et al. An open conformation of switch I revealed by Sar1-GDP crystal structure at low Mg2+. Biochem. Biophys. Res. Commun.348, 908–915 (2006). CASPubMed Google Scholar
Antonny, B., Beraud-Dufour, S., Chardin, P. & Chabre, M. N-terminal hydrophobic residues of the G-protein ADP-ribosylation factor-1 insert into membrane phospholipids upon GDP to GTP exchange. Biochemistry36, 4675–4684 (1997). CASPubMed Google Scholar
Matsuoka, K. et al. COPII-coated vesicle formation reconstituted with purified coat proteins and chemically defined liposomes. Cell93, 263–275 (1998). CASPubMed Google Scholar
Lee, M. C. et al. Sar1p N-terminal helix initiates membrane curvature and completes the fission of a COPII vesicle. Cell122, 605–617 (2005). CASPubMed Google Scholar
Miller, E., Antonny, B., Hamamoto, S. & Schekman, R. Cargo selection into COPII vesicles is driven by the Sec24p subunit. EMBO J.21, 6105–6113 (2002). CASPubMedPubMed Central Google Scholar
Matsuoka, K., Schekman, R., Orci, L. & Heuser, J. E. Surface structure of the COPII-coated vesicle. Proc. Natl Acad. Sci. USA98, 13705–13709 (2001). CASPubMedPubMed Central Google Scholar
Fath, S., Mancias, J. D., Bi, X. & Goldberg, J. Structure and organization of coat proteins in the COPII cage. Cell129, 1325–1336 (2007). CASPubMed Google Scholar
Stagg, S. M. et al. Structure of the Sec13/31 COPII coat cage. Nature439, 234–238 (2006). CASPubMed Google Scholar
Antonny, B., Madden, D., Hamamoto, S., Orci, L. & Schekman, R. Dynamics of the COPII coat with GTP and stable analogues. Nat. Cell Biol.3, 531–537 (2001). CASPubMed Google Scholar
Sato, K. & Nakano, A. Dissection of COPII subunit-cargo assembly and disassembly kinetics during Sar1p-GTP hydrolysis. Nat. Struct. Mol. Biol.12, 167–174 (2005). CASPubMed Google Scholar
Forster, R. et al. Secretory cargo regulates the turnover of COPII subunits at single ER exit sites. Curr. Biol.16, 173–179 (2006). CASPubMed Google Scholar
Cai, H. et al. TRAPPI tethers COPII vesicles by binding the coat subunit Sec23. Nature445, 941–944 (2007). CASPubMed Google Scholar
Lord, C. et al. Sequential interactions with Sec23 control the direction of vesicle traffic. Nature473, 181–186 (2011). CASPubMedPubMed Central Google Scholar
Bi, X., Mancias, J. D. & Goldberg, J. Insights into COPII coat nucleation from the structure of Sec23.Sar1 complexed with the active fragment of Sec31. Dev. Cell13, 635–645 (2007). CASPubMedPubMed Central Google Scholar
Fromme, J. C. et al. The genetic basis of a craniofacial disease provides insight into COPII coat assembly. Dev. Cell13, 623–634 (2007). CASPubMedPubMed Central Google Scholar
Fromme, J. C., Orci, L. & Schekman, R. Coordination of COPII vesicle trafficking by Sec23. Trends Cell Biol.18, 330–336 (2008). CASPubMed Google Scholar
Lang, M. R., Lapierre, L. A., Frotscher, M., Goldenring, J. R. & Knapik, E. W. Secretory COPII coat component Sec23a is essential for craniofacial chondrocyte maturation. Nat. Genet.38, 1198–1203 (2006). CASPubMed Google Scholar
Bianchi, P. et al. Congenital dyserythropoietic anemia type II (CDAII) is caused by mutations in the SEC23B gene. Hum. Mutat.30, 1292–1298 (2009). CASPubMed Google Scholar
Schwarz, K. et al. Mutations affecting the secretory COPII coat component SEC23B cause congenital dyserythropoietic anemia type II. Nat. Genet.41, 936–940 (2009). CASPubMed Google Scholar
Miller, E. A. et al. Multiple cargo binding sites on the COPII subunit Sec24p ensure capture of diverse membrane proteins into transport vesicles. Cell114, 497–509 (2003). CASPubMed Google Scholar
Wendeler, M. W., Paccaud, J. P. & Hauri, H. P. Role of Sec24 isoforms in selective export of membrane proteins from the endoplasmic reticulum. EMBO Rep.8, 258–264 (2007). CASPubMedPubMed Central Google Scholar
Demmel, L. et al. Differential selection of Golgi proteins by COPII Sec24 isoforms in procyclic T. brucei. Traffic12, 1575–1591 (2011). CAS Google Scholar
Mancias, J. D. & Goldberg, J. The transport signal on Sec22 for packaging into COPII-coated vesicles is a conformational epitope. Mol. Cell26, 403–414 (2007). CASPubMed Google Scholar
Mancias, J. D. & Goldberg, J. Structural basis of cargo membrane protein discrimination by the human COPII coat machinery. EMBO J.27, 2918–2928 (2008). CASPubMedPubMed Central Google Scholar
Mossessova, E., Bickford, L. C. & Goldberg, J. SNARE selectivity of the COPII coat. Cell114, 483–495 (2003). CASPubMed Google Scholar
Sucic, S. et al. The serotonin transporter is an exclusive client of the coat protein complex II (COPII) component SEC24C. J. Biol. Chem.286, 16482–16490 (2011). CASPubMedPubMed Central Google Scholar
Farhan, H. et al. Concentrative export from the endoplasmic reticulum of the gamma-aminobutyric acid transporter 1 requires binding to SEC24D. J. Biol. Chem.282, 7679–7689 (2007). CASPubMed Google Scholar
Merte, J. et al. Sec24b selectively sorts Vangl2 to regulate planar cell polarity during neural tube closure. Nat. Cell Biol.12, 41–46 (2010). CASPubMed Google Scholar
Wansleeben, C. et al. Planar cell polarity defects and defective Vangl2 trafficking in mutants for the COPII gene Sec24b. Development137, 1067–1073 (2010). CASPubMed Google Scholar
Zeuschner, D. et al. Immuno-electron tomography of ER exit sites reveals the existence of free COPII-coated transport carriers. Nat. Cell Biol.8, 377–383 (2006). CASPubMed Google Scholar
Appenzeller-Herzog, C. & Hauri, H. P. The ER-Golgi intermediate compartment (ERGIC): in search of its identity and function. J. Cell Sci.119, 2173–2183 (2006). CASPubMed Google Scholar
Novick, P., Field, C. & Schekman, R. Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell21, 205–215 (1980). CASPubMed Google Scholar
Connerly, P. L. et al. Sec16 is a determinant of transitional ER organization. Curr. Biol.15, 1439–1447 (2005). CASPubMed Google Scholar
Watson, P., Townley, A. K., Koka, P., Palmer, K. J. & Stephens, D. J. Sec16 defines endoplasmic reticulum exit sites and is required for secretory cargo export in mammalian cells. Traffic7, 1678–1687 (2006). CASPubMedPubMed Central Google Scholar
Iinuma, T. et al. Mammalian Sec16/p250 plays a role in membrane traffic from the endoplasmic reticulum. J. Biol. Chem.282, 17632–17639 (2007). CASPubMed Google Scholar
Bhattacharyya, D. & Glick, B. S. Two mammalian Sec16 homologues have nonredundant functions in endoplasmic reticulum (ER) export and transitional ER organization. Mol. Biol. Cell18, 839–849 (2007). CASPubMedPubMed Central Google Scholar
Shindiapina, P. & Barlowe, C. Requirements for transitional endoplasmic reticulum site structure and function in Saccharomyces cerevisiae. Mol. Biol. Cell21, 1530–1545 (2010). CASPubMedPubMed Central Google Scholar
Hughes, H. et al. Organisation of human ER-exit sites: requirements for the localisation of Sec16 to transitional ER. J. Cell Sci.122, 2924–2934 (2009). CASPubMedPubMed Central Google Scholar
Ivan, V. et al. Drosophila Sec16 mediates the biogenesis of tER sites upstream of Sar1 through an arginine-rich motif. Mol. Biol. Cell19, 4352–4365 (2008). CASPubMedPubMed Central Google Scholar
Espenshade, P., Gimeno, R. E., Holzmacher, E., Teung, P. & Kaiser, C. A. Yeast SEC16 gene encodes a multidomain vesicle coat protein that interacts with Sec23p. J. Cell Biol.131, 311–324 (1995). CASPubMed Google Scholar
Gimeno, R. E., Espenshade, P. & Kaiser, C. A. COPII coat subunit interactions: Sec24p and Sec23p bind to adjacent regions of Sec16p. Mol. Biol. Cell7, 1815–1823 (1996). CASPubMedPubMed Central Google Scholar
Shaywitz, D. A., Espenshade, P. J., Gimeno, R. E. & Kaiser, C. A. COPII subunit interactions in the assembly of the vesicle coat. J. Biol. Chem.272, 25413–25416 (1997). CASPubMed Google Scholar
Whittle, J. R. & Schwartz, T. U. Structure of the Sec13-Sec16 edge element, a template for assembly of the COPII vesicle coat. J. Cell Biol.190, 347–361 (2010). CASPubMedPubMed Central Google Scholar
Supek, F., Madden, D. T., Hamamoto, S., Orci, L. & Schekman, R. Sec16p potentiates the action of COPII proteins to bud transport vesicles. J. Cell Biol.158, 1029–1038 (2002). CASPubMedPubMed Central Google Scholar
Hughes, H. & Stephens, D. J. Sec16A defines the site for vesicle budding from the endoplasmic reticulum on exit from mitosis. J. Cell Sci.123, 4032–4038 (2010). CASPubMedPubMed Central Google Scholar
Yonekawa, S. et al. Sec16B is involved in the endoplasmic reticulum export of the peroxisomal membrane biogenesis factor peroxin 16 (Pex16) in mammalian cells. Proc. Natl Acad Sci USA108, 12746–12751 (2011). CASPubMedPubMed Central Google Scholar
Pathre, P. et al. Activation of phospholipase D by the small GTPase Sar1p is required to support COPII assembly and ER export. EMBO J.22, 4059–4069 (2003). CASPubMedPubMed Central Google Scholar
Blumental-Perry, A. et al. Phosphatidylinositol 4-phosphate formation at ER exit sites regulates ER export. Dev. Cell11, 671–682 (2006). CASPubMed Google Scholar
Shimoi, W. et al. p125 is localized in endoplasmic reticulum exit sites and involved in their organization. J. Biol. Chem.280, 10141–10148 (2005). CASPubMed Google Scholar
Ong, Y. S., Tang, B. L., Loo, L. S. & Hong, W. p125A exists as part of the mammalian Sec13/Sec31 COPII subcomplex to facilitate ER–Golgi transport. J. Cell Biol.190, 331–345 (2010). CASPubMedPubMed Central Google Scholar
Farhan, H., Weiss, M., Tani, K., Kaufman, R. J. & Hauri, H. P. Adaptation of endoplasmic reticulum exit sites to acute and chronic increases in cargo load. EMBO J.27, 2043–2054 (2008). CASPubMedPubMed Central Google Scholar
Presley, J. F. et al. ER-to-Golgi transport visualized in living cells. Nature389, 81–85 (1997). CASPubMed Google Scholar
Lippincott-Schwartz, J., Cole, N. B., Marotta, A., Conrad, P. A. & Bloom, G. S. Kinesin is the motor for microtubule-mediated Golgi-to-ER membrane traffic. J. Cell Biol.128, 293–306 (1995). CASPubMed Google Scholar
Scales, S. J., Pepperkok, R. & Kreis, T. E. Visualization of ER-to-Golgi transport in living cells reveals a sequential mode of action for COPII and COPI. Cell90, 1137–1148 (1997). CASPubMed Google Scholar
Hammond, A. T. & Glick, B. S. Dynamics of transitional endoplasmic reticulum sites in vertebrate cells. Mol. Biol. Cell11, 3013–3030 (2000). CASPubMedPubMed Central Google Scholar
Watson, P., Forster, R., Palmer, K. J., Pepperkok, R. & Stephens, D. J. Coupling of ER exit to microtubules through direct interaction of COPII with dynactin. Nat. Cell Biol.7, 48–55 (2005). CASPubMed Google Scholar
Heinzer, S., Worz, S., Kalla, C., Rohr, K. & Weiss, M. A model for the self-organization of exit sites in the endoplasmic reticulum. J. Cell Sci.121, 55–64 (2008). CASPubMed Google Scholar
Srinivasan, R. et al. Nicotine up-regulates alpha4beta2 nicotinic receptors and ER exit sites via stoichiometry-dependent chaperoning. J. Gen. Physiol.137, 59–79 (2011). CASPubMedPubMed Central Google Scholar
Farhan, H. et al. MAPK signaling to the early secretory pathway revealed by kinase/phosphatase functional screening. J. Cell Biol.189, 997–1011 (2010). CASPubMedPubMed Central Google Scholar
Zacharogianni, M. et al. ERK7 is a negative regulator of protein secretion in response to amino-acid starvation by modulating Sec16 membrane association. EMBO J.30, 3684–3700 (2011). CASPubMedPubMed Central Google Scholar
Aridor, M. & Fish, K. N. Selective targeting of ER exit sites supports axon development. Traffic10, 1669–1684 (2009). CASPubMedPubMed Central Google Scholar
Kamiya, Y. et al. Molecular basis of sugar recognition by the human L-type lectins ERGIC-53, VIPL, and VIP36. J. Biol. Chem.283, 1857–1861 (2008). CASPubMed Google Scholar
Moussalli, M. et al. Mannose-dependent endoplasmic reticulum (ER)–Golgi intermediate compartment-53-mediated ER to Golgi trafficking of coagulation factors V and VIII. J. Biol. Chem.274, 32539–32542 (1999). CASPubMed Google Scholar
Zhang, B. et al. Bleeding due to disruption of a cargo-specific ER-to-Golgi transport complex. Nat. Genet.34, 220–225 (2003). CASPubMed Google Scholar
Nyfeler, B., Zhang, B., Ginsburg, D., Kaufman, R. J. & Hauri, H. P. Cargo selectivity of the ERGIC-53/MCFD2 transport receptor complex. Traffic7, 1473–1481 (2006). CASPubMed Google Scholar
Nyfeler, B. et al. Identification of ERGIC-53 as an intracellular transport receptor of alpha1-antitrypsin. J. Cell Biol.180, 705–712 (2008). CASPubMedPubMed Central Google Scholar
Bonnon, C., Wendeler, M. W., Paccaud, J. P. & Hauri, H. P. Selective export of human GPI-anchored proteins from the endoplasmic reticulum. J. Cell Sci.123, 1705–1715 (2010). CASPubMed Google Scholar
Castillon, G. A. et al. The yeast p24 complex regulates GPI-anchored protein transport and quality control by monitoring anchor remodeling. Mol. Biol. Cell22, 2924–2936 (2011). CASPubMedPubMed Central Google Scholar
Fujita, M. et al. Sorting of GPI-anchored proteins into ER exit sites by p24 proteins is dependent on remodeled GPI. J. Cell Biol.194, 61–75 (2011). CASPubMedPubMed Central Google Scholar
Takida, S., Maeda, Y. & Kinoshita, T. Mammalian GPI-anchored proteins require p24 proteins for their efficient transport from the ER to the plasma membrane. Biochem. J.409, 555–562 (2008). CASPubMed Google Scholar
Springer, S. et al. The p24 proteins are not essential for vesicular transport in Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 97, 4034–4039 (2000). CASPubMedPubMed Central Google Scholar
Denzel, A. et al. The p24 family member p23 is required for early embryonic development. Curr. Biol.10, 55–58 (2000). CASPubMed Google Scholar
Lambert, G. et al. Control of cystic fibrosis transmembrane conductance regulator expression by BAP31. J. Biol. Chem.276, 20340–20345 (2001). CASPubMed Google Scholar
Abe, F., Van Prooyen, N., Ladasky, J. J. & Edidin, M. Interaction of Bap31 and MHC class I molecules and their traffic out of the endoplasmic reticulum. J. Immunol.182, 4776–4783 (2009). CASPubMed Google Scholar
Annaert, W. G., Becker, B., Kistner, U., Reth, M. & Jahn, R. Export of cellubrevin from the endoplasmic reticulum is controlled by BAP31. J. Cell Biol.139, 1397–1410 (1997). CASPubMedPubMed Central Google Scholar
Brown, M. S. & Goldstein, J. L. Cholesterol feedback: from Schoenheimer's bottle to Scap's MELADL. J. Lipid Res.50, Suppl. S15–S27 (2009). PubMedPubMed Central Google Scholar
Yang, T. et al. Crucial step in cholesterol homeostasis: sterols promote binding of SCAP to INSIG-1, a membrane protein that facilitates retention of SREBPs in ER. Cell110, 489–500 (2002). CASPubMed Google Scholar
Espenshade, P. J., Li, W. P. & Yabe, D. Sterols block binding of COPII proteins to SCAP, thereby controlling SCAP sorting in ER. Proc. Natl Acad. Sci. USA99, 11694–11699 (2002). CASPubMedPubMed Central Google Scholar
Sun, L. P., Seemann, J., Goldstein, J. L. & Brown, M. S. Sterol-regulated transport of SREBPs from endoplasmic reticulum to Golgi: Insig renders sorting signal in Scap inaccessible to COPII proteins. Proc. Natl Acad. Sci. USA104, 6519–6526 (2007). CASPubMedPubMed Central Google Scholar
DeBose-Boyd, R. A. et al. Transport-dependent proteolysis of SREBP: relocation of site-1 protease from Golgi to ER obviates the need for SREBP transport to Golgi. Cell99, 703–712 (1999). CASPubMed Google Scholar
Kuwana, T., Peterson, P. A. & Karlsson, L. Exit of major histocompatibility complex class II-invariant chain p35 complexes from the endoplasmic reticulum is modulated by phosphorylation. Proc. Natl Acad. Sci. USA95, 1056–1061 (1998). CASPubMedPubMed Central Google Scholar
O'Kelly, I., Butler, M. H., Zilberberg, N. & Goldstein, S. A. Forward transport. 14-3-3 binding overcomes retention in endoplasmic reticulum by dibasic signals. Cell111, 577–588 (2002). CASPubMed Google Scholar
Chen, Y. T., Stewart, D. B. & Nelson, W. J. Coupling assembly of the E-cadherin/beta-catenin complex to efficient endoplasmic reticulum exit and basal-lateral membrane targeting of E-cadherin in polarized MDCK cells. J. Cell Biol.144, 687–699 (1999). CASPubMedPubMed Central Google Scholar
Nakamura, T. et al. PX-RICS mediates ER-to-Golgi transport of the N-cadherin/beta-catenin complex. Genes Dev.22, 1244–1256 (2008). CASPubMedPubMed Central Google Scholar
Wang, J. et al. Dishevelled genes mediate a conserved mammalian PCP pathway to regulate convergent extension during neurulation. Development133, 1767–1778 (2006). CASPubMed Google Scholar
Simons, M. et al. Electrochemical cues regulate assembly of the Frizzled/Dishevelled complex at the plasma membrane during planar epithelial polarization. Nat. Cell Biol.11, 286–294 (2009). CASPubMedPubMed Central Google Scholar
Das, S. et al. ERp29 restricts Connexin43 oligomerization in the endoplasmic reticulum. Mol. Biol. Cell20, 2593–2604 (2009). CASPubMedPubMed Central Google Scholar
Aryal, R. P., Ju, T. & Cummings, R. D. The endoplasmic reticulum chaperone Cosmc directly promotes in vitro folding of T-synthase. J. Biol. Chem.285, 2456–2462 (2010). CASPubMed Google Scholar
Schindler, A. J. & Schekman, R. In vitro reconstitution of ER-stress induced ATF6 transport in COPII vesicles. Proc. Natl Acad. Sci. USA106, 17775–17780 (2009). CASPubMedPubMed Central Google Scholar
Shen, J., Chen, X., Hendershot, L. & Prywes, R. ER stress regulation of ATF6 localization by dissociation of BiP/GRP78 binding and unmasking of Golgi localization signals. Dev. Cell3, 99–111 (2002). CASPubMed Google Scholar
Saito, K. et al. TANGO1 facilitates cargo loading at endoplasmic reticulum exit sites. Cell136, 891–902 (2009). CASPubMed Google Scholar
Bachinger, H. P., Doege, K. J., Petschek, J. P., Fessler, L. I. & Fessler, J. H. Structural implications from an electronmicroscopic comparison of procollagen V with procollagen I, pC-collagen I, procollagen IV, and a Drosophila procollagen. J. Biol. Chem.257, 14590–14592 (1982). CASPubMed Google Scholar
Zilversmit, D. B. Formation and transport of chylomicrons. Fed. Proc.26, 1599–1605 (1967). CASPubMed Google Scholar
Aridor, M., Bannykh, S. I., Rowe, T. & Balch, W. E. Sequential coupling between COPII and COPI vesicle coats in endoplasmic reticulum to Golgi transport. J. Cell Biol.131, 875–893 (1995). CASPubMed Google Scholar
Bonfanti, L. et al. Procollagen traverses the Golgi stack without leaving the lumen of cisternae: evidence for cisternal maturation. Cell95, 993–1003 (1998). CASPubMed Google Scholar
Townley, A. K. et al. Efficient coupling of Sec23–Sec24 to Sec13–Sec31 drives COPII-dependent collagen secretion and is essential for normal craniofacial development. J. Cell Sci.121, 3025–3034 (2008). CASPubMed Google Scholar
Wilson, D. G. et al. Global defects in collagen secretion in a Mia3/TANGO1 knockout mouse. J. Cell Biol.193, 935–951 (2011). CASPubMedPubMed Central Google Scholar
Saito, K. et al. cTAGE5 mediates collagen secretion through interaction with TANGO1 at endoplasmic reticulum exit sites. Mol. Biol. Cell22, 2301–2308 (2011). CASPubMedPubMed Central Google Scholar
Malhotra, V. & Erlmann, P. Protein export at the ER: loading big collagens into COPII carriers. EMBO J.30, 3475–3480 (2011). CASPubMedPubMed Central Google Scholar
Boyadjiev, S. A. et al. A novel dysmorphic syndrome with open calvarial sutures and sutural cataracts maps to chromosome 14q13–q21. Hum. Genet.113, 1–9 (2003). CASPubMed Google Scholar
Boyadjiev, S. A. et al. Cranio-lenticulo-sutural dysplasia is caused by a SEC23A mutation leading to abnormal endoplasmic-reticulum-to-Golgi trafficking. Nat. Genet.38, 1192–1197 (2006). CASPubMed Google Scholar
Saito, A. et al. Regulation of endoplasmic reticulum stress response by a BBF2H7-mediated Sec23a pathway is essential for chondrogenesis. Nat. Cell Biol.11, 1197–1204 (2009). CASPubMed Google Scholar
Mironov, A. A. et al. ER-to-Golgi carriers arise through direct en bloc protrusion and multistage maturation of specialized ER exit domains. Dev. Cell5, 583–594 (2003). CASPubMed Google Scholar
Jones, B. et al. Mutations in a Sar1 GTPase of COPII vesicles are associated with lipid absorption disorders. Nat. Genet.34, 29–31 (2003). CASPubMed Google Scholar
Treepongkaruna, S. et al. Novel missense mutations of SAR1B gene in an infant with chylomicron retention disease. J. Pediatr. Gastroenterol. Nutr.48, 370–373 (2009). PubMed Google Scholar
Silvain, M. et al. Anderson's disease (chylomicron retention disease): a new mutation in the SARA2 gene associated with muscular and cardiac abnormalities. Clin. Genet.74, 546–552 (2008). CASPubMed Google Scholar
Levy, E. et al. Expression of Sar1b enhances chylomicron assembly and key components of the coat protein complex ii system driving vesicle budding. Arterioscler. Thromb. Vasc. Biol.31, 2692–2699 (2011). CASPubMed Google Scholar
Siddiqi, S. A., Gorelick, F. S., Mahan, J. T. & Mansbach, C. M. II COPII proteins are required for Golgi fusion but not for endoplasmic reticulum budding of the pre-chylomicron transport vesicle. J. Cell Sci.116, 415–427 (2003). CASPubMed Google Scholar
Siddiqi, S. et al. A novel multiprotein complex is required to generate the prechylomicron transport vesicle from intestinal ER. J. Lipid Res.51, 1918–1928 (2010). CASPubMedPubMed Central Google Scholar
Siddiqi, S., Siddiqi, S. A. & Mansbach, C. M. II Sec24C is required for docking the prechylomicron transport vesicle with the Golgi. J. Lipid Res.51, 1093–1100 (2010). CASPubMedPubMed Central Google Scholar
O'Donnell, J., Maddox, K. & Stagg, S. The structure of a COPII tubule. J. Struct. Biol.173, 358–364 (2011). CASPubMed Google Scholar
Kim, W. et al. Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol. Cell44, 325–340 (2011). CASPubMedPubMed Central Google Scholar
la Cour, J. M., Mollerup, J. & Berchtold, M. W. ALG-2 oscillates in subcellular localization, unitemporally with calcium oscillations. Biochem. Biophys. Res. Commun.353, 1063–1067 (2007). CASPubMed Google Scholar
Yamasaki, A., Tani, K., Yamamoto, A., Kitamura, N. & Komada, M. The Ca2+-binding protein ALG-2 is recruited to endoplasmic reticulum exit sites by Sec31A and stabilizes the localization of Sec31A. Mol. Biol. Cell17, 4876–4887 (2006). CASPubMedPubMed Central Google Scholar
Bentley, M. et al. Vesicular calcium regulates coat retention, fusogenicity, and size of pre-Golgi intermediates. Mol. Biol. Cell21, 1033–1046 (2010). CASPubMedPubMed Central Google Scholar
Shibata, H. et al. The ALG-2 binding site in Sec31A influences the retention kinetics of Sec31A at the endoplasmic reticulum exit sites as revealed by live-cell time-lapse imaging. Biosci. Biotechnol. Biochem.74, 1819–1826 (2010). CASPubMed Google Scholar
Shibata, H., Suzuki, H., Yoshida, H. & Maki, M. ALG-2 directly binds Sec31A and localizes at endoplasmic reticulum exit sites in a Ca2+-dependent manner. Biochem. Biophys. Res. Commun.353, 756–763 (2007). CASPubMed Google Scholar