Sorting nexin 17 prevents lysosomal degradation of β1 integrins by binding to the β1-integrin tail (original) (raw)
Hynes, R. O. Integrins: bidirectional, allosteric signaling machines. Cell110, 673–687 (2002). ArticleCAS Google Scholar
Moser, M., Legate, K. R., Zent, R. & Fässler, R. The tail of integrins, talin, and kindlins. Science324, 895–899 (2009). ArticleCAS Google Scholar
Shattil, S. J., Kim, C. & Ginsberg, M. H. The final steps of integrin activation: the end game. Nat. Rev. Mol. Cell Biol.11, 288–300 (2010). ArticleCAS Google Scholar
Calderwood, D. A. et al. The phosphotyrosine binding-like domain of talin activates integrins. J. Biol. Chem.277, 21749–21758 (2002). ArticleCAS Google Scholar
Calderwood, D. A. et al. The Talin head domain binds to integrin β subunit cytoplasmic tails and regulates integrin activation. J. Biol. Chem.274, 28071–28074 (1999). ArticleCAS Google Scholar
Ma, Y. Q., Qin, J., Wu, C. & Plow, E. F. Kindlin-2 (Mig-2): a co-activator of β3 integrins. J. Cell Biol.181, 439–446 (2008). ArticleCAS Google Scholar
Montanez, E. et al. Kindlin-2 controls bidirectional signaling of integrins. Genes Dev.22, 1325–1330 (2008). ArticleCAS Google Scholar
Moser, M. et al. Kindlin-3 is required for β2 integrin-mediated leukocyte adhesion to endothelial cells. Nat. Med.15, 300–305 (2009). ArticleCAS Google Scholar
Moser, M., Nieswandt, B., Ussar, S., Pozgajova, M. & Fässler, R. Kindlin-3 is essential for integrin activation and platelet aggregation. Nat. Med.14, 325–330 (2008). ArticleCAS Google Scholar
Caswell, P. T., Vadrevu, S. & Norman, J. C. Integrins: masters and slaves of endocytic transport. Nat. Rev. Mol. Cell Biol.10, 843–853 (2009). ArticleCAS Google Scholar
Sung, B. H., Zhu, X., Kaverina, I. & Weaver, A. M. Cortactin controls cell motility and lamellipodial dynamics by regulating ECM secretion. Curr. Biol.21, 1460–1469 (2011). ArticleCAS Google Scholar
Roberts, M. S., Woods, A. J., Dale, T. C., Van Der Sluijs, P. & Norman, J. C. Protein kinase B/Akt acts via glycogen synthase kinase 3 to regulate recycling of αv β3 and α5β1 integrins. Mol. Cell. Biol.24, 1505–1515 (2004). ArticleCAS Google Scholar
Woods, A. J., White, D. P., Caswell, P. T. & Norman, J. C. PKD1/PKCmu promotes αv β3 integrin recycling and delivery to nascent focal adhesions. EMBO J.23, 2531–2543 (2004). ArticleCAS Google Scholar
Margadant, C., Monsuur, H. N., Norman, J. C. & Sonnenberg, A. Mechanisms of integrin activation and trafficking. Curr. Opin. Cell Biol.23, 607–614 (2011). ArticleCAS Google Scholar
Lobert, V. H. et al. Ubiquitination of α5β1 integrin controls fibroblast migration through lysosomal degradation of fibronectin-integrin complexes. Dev. Cell19, 148–159 (2010). ArticleCAS Google Scholar
Ussar, S. et al. Loss of Kindlin-1 causes skin atrophy and lethal neonatal intestinal epithelial dysfunction. PLoS Genet.4, e1000289 (2008). Article Google Scholar
Harburger, D. S., Bouaouina, M. & Calderwood, D. A. Kindlin-1 and -2 directly bind the C-terminal region of β integrin cytoplasmic tails and exert integrin-specific activation effects. J. Biol. Chem.284, 11485–11497 (2009). ArticleCAS Google Scholar
Ong, S. E. et al. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell Proteomics1, 376–386 (2002). ArticleCAS Google Scholar
Mann, M. Functional and quantitative proteomics using SILAC. Nat Rev. Mol. Cell Biol.7, 952–958 (2006). ArticleCAS Google Scholar
Ghai, R. et al. Phox homology band 4.1/ezrin/radixin/moesin-like proteins function as molecular scaffolds that interact with cargo receptors and Ras GTPases. Proc. Natl Acad. Sci. USA108, 7763–7768 (2011). ArticleCAS Google Scholar
Tadokoro, S. et al. Talin binding to integrin β tails: a final common step in integrin activation. Science302, 103–106 (2003). ArticleCAS Google Scholar
Burden, J. J., Sun, X. M., Garcia, A. B. & Soutar, A. K. Sorting motifs in the intracellular domain of the low density lipoprotein receptor interact with a novel domain of sorting nexin-17. J. Biol. Chem.279, 16237–16245 (2004). ArticleCAS Google Scholar
Stockinger, W. et al. The PX-domain protein SNX17 interacts with members of the LDL receptor family and modulates endocytosis of the LDL receptor. EMBO J.21, 4259–4267 (2002). ArticleCAS Google Scholar
Van Kerkhof, P. et al. Sorting nexin 17 facilitates LRP recycling in the early endosome. EMBO J.24, 2851–2861 (2005). ArticleCAS Google Scholar
Knauth, P. et al. Functions of sorting nexin 17 domains and recognition motif for P-selectin trafficking. J. Mol. Biol.347, 813–825 (2005). ArticleCAS Google Scholar
Lee, J. et al. Adaptor protein sorting nexin 17 regulates amyloid precursor protein trafficking and processing in the early endosomes. J. Biol. Chem.283, 11501–11508 (2008). ArticleCAS Google Scholar
Van Weert, A. W., Geuze, H. J., Groothuis, B. & Stoorvogel, W. Primaquine interferes with membrane recycling from endosomes to the plasma membrane through a direct interaction with endosomes which does not involve neutralisation of endosomal pH nor osmotic swelling of endosomes. Eur. J. Cell Biol.79, 394–399 (2000). ArticleCAS Google Scholar
Meves, A., Stremmel, C., Gottschalk, K. & Fassler, R. The Kindlin protein family: new members to the club of focal adhesion proteins. Trends Cell Biol.19, 504–513 (2009). ArticleCAS Google Scholar
Liu, J. et al. Structural basis of phosphoinositide binding to kindlin-2 protein pleckstrin homology domain in regulating integrin activation. J. Biol. Chem.286, 43334–43342 (2011). ArticleCAS Google Scholar
Cullen, P. J. Endosomal sorting and signalling: an emerging role for sorting nexins. Nat. Rev. Mol. Cell Biol.9, 574–582 (2008). ArticleCAS Google Scholar
Donoso, M. et al. Polarized traffic of LRP1 involves AP1B and SNX17 operating on Y-dependent sorting motifs in different pathways. Mol. Biol. Cell20, 481–497 (2009). ArticleCAS Google Scholar
Williams, R. et al. Sorting nexin 17 accelerates internalization yet retards degradation of P-selectin. Mol. Biol. Cell15, 3095–3105 (2004). ArticleCAS Google Scholar
Raiborg, C. & Stenmark, H. The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins. Nature458, 445–452 (2009). ArticleCAS Google Scholar
Caswell, P. T. et al. Rab-coupling protein coordinates recycling of α5β1 integrin and EGFR1 to promote cell migration in 3D microenvironments. J. Cell Biol.183, 143–155 (2008). ArticleCAS Google Scholar
Czuchra, A., Meyer, H., Legate, K. R., Brakebusch, C. & Fässler, R. Genetic analysis of β1 integrin ‘activation motifs’ in mice. J. Cell Biol.174, 889–899 (2006). ArticleCAS Google Scholar
Ussar, S., Wang, H. V., Linder, S., Fässler, R. & Moser, M. The Kindlins: subcellular localization and expression during murine development. Exp. Cell Res.312, 3142–3151 (2006). ArticleCAS Google Scholar
Azimifar, S. B. et al. Induction of membrane circular dorsal ruffles requires co-signalling of integrin-ILK-complex and EGF receptor. J. Cell Sci.125, 435–448 (2012). ArticleCAS Google Scholar
Li, M. Z. & Elledge, S. J. Harnessing homologous recombination in vitro to generate recombinant DNA via SLIC. Nat. Methods4, 251–256 (2007). ArticleCAS Google Scholar
Mates, L. et al. Molecular evolution of a novel hyperactive Sleeping Beauty transposase enables robust stable gene transfer in vertebrates. Nat. Genet.41, 753–761 (2009). ArticleCAS Google Scholar
Pfeifer, A., Kessler, T., Silletti, S., Cheresh, D. A. & Verma, I. M. Suppression of angiogenesis by lentiviral delivery of PEX, a noncatalytic fragment of matrix metalloproteinase 2. Proc. Natl Acad. Sci. USA97, 12227–12232 (2000). ArticleCAS Google Scholar
Montanez, E. et al. Analysis of integrin functions in peri-implantation embryos, hematopoietic system, and skin. Methods Enzymol.426, 239–289 (2007). ArticleCAS Google Scholar
Roberts, M., Barry, S., Woods, A., van der Sluijs, P & Norman, J. PDGF-regulated rab4-dependent recycling of αv β3 integrin from early endosomes is necessary for cell adhesion and spreading. Current Biol.11, 1392–1402 (2001). ArticleCAS Google Scholar
Meves, A. et al. β1 integrin cytoplasmic tyrosines promote skin tumorigenesis independent of their phosphorylation. Proc. Natl Acad. Sci. USA108, 15213–15218 (2011). ArticleCAS Google Scholar
Böttcher, R. T. et al. Profilin 1 is required for abscission during late cytokinesis of chondrocytes. EMBO J.28, 1157–1169 (2009). Article Google Scholar