A novel PKC-regulated mechanism controls CD44–ezrin association and directional cell motility (original) (raw)
Lesley, J., Hyman, R. & Kincade, P. W. CD44 and its interaction with extracellular matrix. Adv. Immunol.54, 271–335 (1993). ArticleCASPubMed Google Scholar
Naor, D., Sionov, R. V. & Ish-Shalom, D. CD44: structure, function and association with the malignant process. Adv. Cancer Res.71, 241–319 (1997). ArticleCASPubMed Google Scholar
Bajorath, J. Molecular organization, structural features and ligand binding characteristics of CD44, a highly variable cell surface glycoprotein with multiple functions. Proteins39, 103–111 (2000). ArticleCASPubMed Google Scholar
Bretscher, A. Regulation of cortical structure by the ezrin-radixin-moesin protein family. Curr. Opin. Cell Biol.11, 109–116 (1999). ArticleCASPubMed Google Scholar
Mangeat, P., Roy, C. & Martin, M. ERM proteins in cell adhesion and membrane dynamics. Trends Cell Biol.9, 187–192 (1999). ArticleCASPubMed Google Scholar
Tsukita, S. & Yonemura, S. Cortical actin organization: Lessons from ERM (ezrin/radixin/moesin) proteins. J. Biol. Chem.274, 34507–34510 (1999). ArticleCASPubMed Google Scholar
Matsui, T. et al. Rho-kinase phosphorylates COOH-terminal threonines of ezrin/radixin/moesin (ERM) proteins and regulates their head-to-tail association. J. Cell Biol.140, 647–657 (1998). ArticleCASPubMedPubMed Central Google Scholar
Huang, L., Wong, T. Y. W., Lin, R. C. C. & Furthmayr, H. Replacement of threonine 558, a critical site of phosphorylation of moesin in vivo, with aspartate activates F-actin binding of moesin. Regulation by conformational change. J. Biol. Chem.274, 12803–12810 (1999). ArticleCASPubMed Google Scholar
Pearson, M. A., Reczek, D., Bretscher, A. & Karplus, P. A. Structure of the ERM protein moesin reveals the FERM domain fold masked by an extended actin binding tail domain. Cell101, 259–270 (2000). ArticleCASPubMed Google Scholar
Barret, C., Roy, C., Montcourrier, P., Mangeat, P. & Niggli, V. Mutagenesis of the phosphatidylinositol 4,5-bisphosphate (PIP2) binding site in the NH2-terminal domain of ezrin correlates with its altered cellular distribution. J. Cell Biol.151, 1067–1080 (2000). ArticleCASPubMedPubMed Central Google Scholar
Mackay, D. J. G., Esch, F., Furthmayr, H. & Hall, A. Rho- and Rac- dependent assembly of focal adhesion complexes and actin filaments in permeabilized fibroblasts: an essential role for ezrin/radixin/moesin proteins. J. Cell Biol.138, 927–938 (1997). ArticleCASPubMedPubMed Central Google Scholar
Takahashi, K. et al. Direct interaction of the Rho GDP dissociation inhibitor with ezrin/radixin/moesin initiates the activation of the Rho small G protein. J. Biol. Chem.272, 23371–23375 (1997). ArticleCASPubMed Google Scholar
Gautreau, A., Louvard, D. & Arpin, M. Morphogenic effects of ezrin require a phosphorylation-induced transition from oligomers to monomers at the plasma membrane. J. Cell Biol.150, 193–203 (2000). ArticleCASPubMedPubMed Central Google Scholar
Shaw, R. J. et al. The Nf2 tumor suppressor, merlin, functions in Rac-dependent signaling. Dev. Cell1, 63–72 (2001). ArticleCASPubMed Google Scholar
Crepaldi, T., Gautreau, A., Comoglio, P. M., Louvard, D. & Arpin, M. Ezrin is an effector of hepatocyte growth factor-mediated migration and morphogenesis in epithelial cells. J. Cell Biol.138, 423–434 (1997). ArticleCASPubMedPubMed Central Google Scholar
Lamb, R. F. et al. Essential functions of ezrin in maintenance of cell shape and lamellipodial extension in normal and transformed fibroblasts. Curr. Biol.7, 682–688 (1997). ArticleCASPubMed Google Scholar
Castelo, L. & Jay, D. G. Radixin is involved in lamellipodial stability during nerve growth cone motility. Mol. Biol. Cell10, 1511–1520 (1999). ArticleCASPubMedPubMed Central Google Scholar
Ng, T. et al. Ezrin is a downstream effector of trafficking PKC-integrin complexes involved in the control of cell motility. EMBO J.20, 2723–2741 (2001). ArticleCASPubMedPubMed Central Google Scholar
Legg, J. W. & Isacke, C. M. Identification and functional analysis of the ezrin-binding site in the hyaluronan receptor, CD44. Curr. Biol.8, 705–708 (1998). ArticleCASPubMed Google Scholar
Yonemura, S. et al. Ezrin/radixin/moesin (ERM) proteins bind to a positively charged amino acid cluster in the juxta-membrane cytoplasmic domain of CD44, CD43 and ICAM-2. J. Cell Biol.140, 885–895 (1998). ArticleCASPubMedPubMed Central Google Scholar
Morrison H. et al. The NF2 tumor suppressor gene product, merlin, mediates contact inhibition of growth through interactions with CD44. Genes Dev.15, 968–980 (2001). ArticleCASPubMedPubMed Central Google Scholar
Peck, D. & Isacke, C. M. Hyaluronan-dependent cell migration can be blocked by a CD44 cytoplasmic domain peptide containing a phosphoserine at position 325. J. Cell Sci.111, 1595–1601 (1998). CASPubMed Google Scholar
Lewis, C. A., Townsend, P. A. & Isacke, C. M. Ca2+/calmodulin-dependent protein kinase mediates the phosphorylation of CD44 required for cell migration on hyaluronan. Biochem. J.357, 843–850 (2001). ArticleCASPubMedPubMed Central Google Scholar
Peck, D. & Isacke, C. M. CD44 phosphorylation regulates melanoma cell and fibroblast migration on, but not attachment to, a hyaluronan substratum. Curr. Biol.6, 884–890 (1996). ArticleCASPubMed Google Scholar
Kalomiris, E. L. & Bourguignon, L. Y. Lymphoma protein kinase C is associated with the transmembrane glycoprotein GP85 and may function in GP85-ankyrin binding. J. Biol. Chem.264, 8113–8119 (1989). CASPubMed Google Scholar
Camp, R. L., Kraus, T. A. & Puré, E. Variations in the cytoskeletal interaction and post-translational modification of the CD44 homing receptor in macrophages. J. Cell. Biol.115, 1283–1292 (1991). ArticleCASPubMed Google Scholar
Neame, S. J. & Isacke, C. M. Phosphorylation of CD44 in vivo requires both Ser323 and Ser325, but does not regulate membrane localisation or cytoskeletal interaction in epithelial cells. EMBO J.11, 4733–4738 (1992). ArticleCASPubMedPubMed Central Google Scholar
Ng, T. et al. PKCα regulates β1 integrin-dependent motility, through association and control of integrin traffic. EMBO J.18, 3909–3923 (1999). ArticleCASPubMedPubMed Central Google Scholar
Parsons, M. & Ng, T. Intracellular coupling of adhesion receptors: molecular proximity measurements. In Adams, J. (ed.) Methods in Cell-Matrix Adhesion. Academic Press, San Diego (in press).
Herreros, J., Ng, T. & Schiavo, G. Lipid rafts act as specialized domains for tetanus toxin binding and internalization into neurons. Mol. Biol. Cell12, 2947–2960 (2001). ArticleCASPubMedPubMed Central Google Scholar
Squire, A. & Bastiaens, P. I. Three dimensional image restoration in fluorescence lifetime imaging microscopy. J. Microsc.193, 36–49 (1999). ArticleCASPubMed Google Scholar
Bastiaens, P. I. & Squire, A. Fluorescence lifetime imaging microscopy: spatial resolution of biochemical processes in the cell. Trends Cell Biol.9, 48–52 (1999). ArticleCASPubMed Google Scholar
Selvin, P. R. The renaissance of fluorescence resonance energy transfer. Nature Struct. Biol.7, 730–734 (2000). ArticleCASPubMed Google Scholar
Potter, L. R. & Hunter T. Activation of protein kinase C stimulates the dephosphorylation of natriuretic peptide receptor-B at a single serine residue. J. Biol. Chem.275, 31099–31106 (2000). ArticleCASPubMed Google Scholar
Levy, M., Jing, J., Chikvashvili, D., Thornhill, W. B. & Lotan, I. Activation of a metabotropic glutamate receptor and protein kinase C reduce the extent of inactivation of the K+ channel Kv1.1/Kvβ1.1 via dephosphorylation of Kv1.1. J. Biol. Chem.273, 6495–6502 (1998). ArticleCASPubMed Google Scholar
Rigot, V. et al. Integrin ligation and PKC activation are required for migration of colon carcinoma cells. J. Cell Sci.111, 3119–3127 (1998). CASPubMed Google Scholar
Thomas, L., Etoh, T., Stamenkovic, I., Mihm, M. C. & Byers, H. R. Migration of human melanoma cells on hyaluronate is related to CD44 expression. J. Invest. Dermatol.100, 115–120 (1993). ArticleCASPubMed Google Scholar
Göebeler, M., Kaufmann, D., Brocker, E.-B. & Klein, C. E. Migration of highly aggressive melanoma cells on hyaluronic acid is associated with functional changes, increased turnover and shedding of CD44 receptors. J. Cell Sci.109, 1957–1964 (1996). PubMed Google Scholar
Herrera-Gayol, A. & Jothy, S. CD44 modulates Hs578T human breast cancer cell adhesion, migration, and invasiveness. Exp. Mol. Pathol.66, 99–108 (1999). ArticleCASPubMed Google Scholar
Bourguignon, L. Y, Zhu, H., Shao, L. & Chen, Y. W. CD44 interaction with tiam1 promotes Rac1 signaling and hyaluronic acid-mediated breast tumor cell migration. J. Biol. Chem.275, 1829–1838 (2000). ArticleCASPubMed Google Scholar
Ballestrem, C., Wehrle-Haller, B., Hinz, B. & Imhof, B. A. Actin-dependent lamellipodia formation and microtubule-dependent tail retraction control-directed cell migration. Mol. Biol. Cell11, 2999–3012 (2000). ArticleCASPubMedPubMed Central Google Scholar
Imamura, H. et al. Rho and Rab small G proteins coordinately reorganize stress fibers and focal adhesions in MDCK cells. Mol. Biol. Cell9, 2561–2575 (1998). ArticleCASPubMedPubMed Central Google Scholar
Bastiaens, P. I. H. & Jovin, T. M. Fluorescence resonance energy transfer microscopy. In Celis, J. (ed.) Cell Biology: A Laboratory Handbook. Academic Press, New York, pp. 136–146 (1998). Google Scholar
Neame, S. J. & Isacke, C. M. The cytoplasmic tail of CD44 is required for basolateral localisation in epithelial MDCK cells but does not mediate association with the detergent insoluble cytoskeleton of fibroblasts. J. Cell Biol.121, 1299–1310 (1993). ArticleCASPubMed Google Scholar
Lamb, R. F. et al. AP-1-mediated invasion requires increased expression of the hyaluronan receptor CD44. Mol. Cell. Biol.17, 963–976 (1997). ArticleCASPubMedPubMed Central Google Scholar
Zarkowska, T., U, S., Harlow, E. & Mittnacht, S. Monoclonal antibodies specific for underphosphorylated retinoblastoma protein identify a cell cycle regulated phosphorylation site targeted by CDKs. Oncogene14, 249–254 (1997). ArticleCASPubMed Google Scholar
Zicha, D., Dunn, G. & Jones, G. Analyzing chemotaxis using the Dunn direct-viewing chamber. Methods Mol. Biol.75, 449–457 (1997). CASPubMed Google Scholar