Proteostasis of polyglutamine varies among neurons and predicts neurodegeneration (original) (raw)
Han, I., You, Y., Kordower, J.H., Brady, S.T. & Morfini, G.A. Differential vulnerability of neurons in Huntington's disease: the role of cell type–specific features. J. Neurochem.113, 1073–1091 (2010). CASPubMedPubMed Central Google Scholar
Taylor, J.P., Hardy, J. & Fischbeck, K.H. Toxic proteins in neurodegenerative disease. Science296, 1991–1995 (2002). ArticleCASPubMed Google Scholar
Kayed, R. et al. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science300, 486–489 (2003). ArticleCASPubMed Google Scholar
Miller, J. et al. Identifying polyglutamine protein species in situ that best predict neurodegeneration. Nat. Chem. Biol.7, 925–934 (2011). ArticleCASPubMedPubMed Central Google Scholar
Gidalevitz, T., Ben-Zvi, A., Ho, K.H., Brignull, H.R. & Morimoto, R.I. Progressive disruption of cellular protein folding in models of polyglutamine diseases. Science311, 1471–1474 (2006). ArticleCASPubMed Google Scholar
Mitra, S., Tsvetkov, A.S. & Finkbeiner, S. Single neuron ubiquitin-proteasome dynamics accompanying inclusion body formation in Huntington disease. J. Biol. Chem.284, 4398–4403 (2009). ArticleCASPubMedPubMed Central Google Scholar
Tsvetkov, A.S. et al. A small-molecule scaffold induces autophagy in primary neurons and protects against toxicity in a Huntington disease model. Proc. Natl. Acad. Sci. USA107, 16982–16987 (2010). ArticleCASPubMedPubMed Central Google Scholar
Takahashi, M. & Ono, Y. Pulse-chase analysis of protein kinase C. Methods Mol. Biol.233, 163–170 (2003). CASPubMed Google Scholar
Gurskaya, N.G. et al. Engineering of a monomeric green-to-red photoactivatable fluorescent protein induced by blue light. Nat. Biotechnol.24, 461–465 (2006). ArticleCASPubMed Google Scholar
Arrasate, M. & Finkbeiner, S. Automated microscope system for determining factors that predict neuronal fate. Proc. Natl. Acad. Sci. USA102, 3840–3845 (2005). ArticleCASPubMedPubMed Central Google Scholar
Leutenegger, A. et al. It's cheap to be colorful. Anthozoans show a slow turnover of GFP-like proteins. FEBS J.274, 2496–2505 (2007). ArticleCASPubMed Google Scholar
Dantuma, N.P., Lindsten, K., Glas, R., Jellne, M. & Masucci, M.G. Short-lived green fluorescent proteins for quantifying ubiquitin/proteasome-dependent proteolysis in living cells. Nat. Biotechnol.18, 538–543 (2000). ArticleCASPubMed Google Scholar
Zoghbi, H.Y. & Orr, H.T. Glutamine repeats and neurodegeneration. Annu. Rev. Neurosci.23, 217–247 (2000). ArticleCASPubMed Google Scholar
DiFiglia, M. Clinical Genetics, II. Huntington's disease: from the gene to pathophysiology. Am. J. Psychiatry154, 1046 (1997). ArticleCASPubMed Google Scholar
Sathasivam, K. et al. Aberrant splicing of HTT generates the pathogenic exon 1 protein in Huntington disease. Proc. Natl. Acad. Sci. USA110, 2366–2370 (2013). ArticleCASPubMedPubMed Central Google Scholar
Wellington, C.L. & Hayden, M.R. Caspases and neurodegeneration: on the cutting edge of new therapeutic approaches. Clin. Genet.57, 1–10 (2000). ArticleCASPubMed Google Scholar
Mangiarini, L. et al. Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell87, 493–506 (1996). ArticleCASPubMed Google Scholar
Arrasate, M., Mitra, S., Schweitzer, E.S., Segal, M.R. & Finkbeiner, S. Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature431, 805–810 (2004). ArticleCASPubMed Google Scholar
Persichetti, F. et al. Differential expression of normal and mutant Huntington's disease gene alleles. Neurobiol. Dis.3, 183–190 (1996). ArticleCASPubMed Google Scholar
Dyer, R.B. & McMurray, C.T. Mutant protein in Huntington disease is resistant to proteolysis in affected brain. Nat. Genet.29, 270–278 (2001). ArticleCASPubMed Google Scholar
Kaytor, M.D., Wilkinson, K.D. & Warren, S.T. Modulating huntingtin half-life alters polyglutamine-dependent aggregate formation and cell toxicity. J. Neurochem.89, 962–973 (2004). ArticleCASPubMed Google Scholar
Roscic, A., Baldo, B., Crochemore, C., Marcellin, D. & Paganetti, P. Induction of autophagy with catalytic mTOR inhibitors reduces huntingtin aggregates in a neuronal cell model. J. Neurochem.119, 398–407 (2011). ArticleCASPubMed Google Scholar
Kazantsev, A., Preisinger, E., Dranovsky, A., Goldgaber, D. & Housman, D. Insoluble detergent-resistant aggregates form between pathological and nonpathological lengths of polyglutamine in mammalian cells. Proc. Natl. Acad. Sci. USA96, 11404–11409 (1999). ArticleCASPubMedPubMed Central Google Scholar
Kopito, R.R. Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol.10, 524–530 (2000). CASPubMed Google Scholar
Hartl, F.U. & Hayer-Hartl, M. Converging concepts of protein folding in vitro and in vivo. Nat. Struct. Mol. Biol.16, 574–581 (2009). ArticleCASPubMed Google Scholar
Snell, R.G. et al. Relationship between trinucleotide repeat expansion and phenotypic variation in Huntington's disease. Nat. Genet.4, 393–397 (1993). ArticleCASPubMed Google Scholar
Saudou, F., Finkbeiner, S., Devys, D. & Greenberg, M.E. Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions. Cell95, 55–66 (1998). ArticleCASPubMed Google Scholar
Matsumoto, G., Kim, S. & Morimoto, R.I. Huntingtin and mutant SOD1 form aggregate structures with distinct molecular properties in human cells. J. Biol. Chem.281, 4477–4485 (2006). ArticleCASPubMed Google Scholar
Lin, C.H. et al. Neurological abnormalities in a knock-in mouse model of Huntington's disease. Hum. Mol. Genet.10, 137–144 (2001). ArticleCASPubMed Google Scholar
Slow, E.J. et al. Absence of behavioral abnormalities and neurodegeneration in vivo despite widespread neuronal huntingtin inclusions. Proc. Natl. Acad. Sci. USA102, 11402–11407 (2005). ArticleCASPubMedPubMed Central Google Scholar
Tsakiri, E.N. et al. Proteasome dysfunction in Drosophila signals to an Nrf2-dependent regulatory circuit aiming to restore proteostasis and prevent premature aging. Aging Cellhttp://dx.doi.org/10.1111/acel.12111 (2013).
Riley, B.E. et al. Ubiquitin accumulation in autophagy-deficient mice is dependent on the Nrf2-mediated stress response pathway: a potential role for protein aggregation in autophagic substrate selection. J. Cell Biol.191, 537–552 (2010). ArticleCASPubMedPubMed Central Google Scholar