Orphan nuclear receptor TR3 acts in autophagic cell death via mitochondrial signaling pathway (original) (raw)
Chudnovsky, Y., Khavari, P.A. & Adams, A.E. Melanoma genetics and the development of rational therapeutics. J. Clin. Invest.115, 813–824 (2005). ArticleCASPubMedPubMed Central Google Scholar
Gray-Schopfer, V., Wellbrock, C. & Marais, R. Melanoma biology and new targeted therapy. Nature445, 851–857 (2007). ArticleCASPubMed Google Scholar
Flaherty, K.T., Hodi, F.S. & Fisher, D.E. From genes to drugs: targeted strategies for melanoma. Nat. Rev. Cancer12, 349–361 (2012). ArticleCASPubMed Google Scholar
Soengas, M.S. & Lowe, S.W. Apoptosis and melanoma chemoresistance. Oncogene22, 3138–3151 (2003). ArticleCASPubMed Google Scholar
Mizushima, N. & Komatsu, M. Autophagy: renovation of cells and tissues. Cell147, 728–741 (2011). ArticleCASPubMed Google Scholar
Maiuri, M.C., Zalckvar, E., Kimchi, A. & Kroemer, G. Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat. Rev. Mol. Cell Biol.8, 741–752 (2007). ArticleCASPubMed Google Scholar
Yu, L., Strandberg, L. & Lenardo, M.J. The selectivity of autophagy and its role in cell death and survival. Autophagy4, 567–573 (2008). ArticlePubMed Google Scholar
Novak, I. et al. Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep.11, 45–51 (2010). ArticleCASPubMed Google Scholar
Geisler, S. et al. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat. Cell Biol.12, 119–131 (2010). ArticleCASPubMed Google Scholar
Zabirnyk, O., Liu, W., Khalil, S., Sharma, A. & Phang, J.M. Oxidized low-density lipoproteins upregulate proline oxidase to initiate ROS-dependent autophagy. Carcinogenesis31, 446–454 (2010). ArticleCASPubMed Google Scholar
Wang, J., Lian, H., Zhao, Y., Kauss, M.A. & Spindel, S. Vitamin D3 induces autophagy of human myeloid leukemia cells. J. Biol. Chem.283, 25596–25605 (2008). ArticleCASPubMed Google Scholar
Wang, R.H. et al. The orphan receptor TR3 participates in angiotensin II–induced cardiac hypertrophy by controlling mTOR signalling. EMBO Mol. Med.5, 137–148 (2013). ArticleCASPubMed Google Scholar
Chen, H.Z. et al. The orphan receptor TR3 suppresses intestinal tumorigenesis in mice by downregulating Wnt signalling. Gut61, 714–724 (2012). ArticleCASPubMed Google Scholar
Zhao, B.X. et al. Orphan receptor TR3 enhances p53 transactivation and represses DNA double-strand break repair in hepatoma cells under ionizing radiation. Mol. Endocrinol.25, 1337–1350 (2011). ArticleCASPubMedPubMed Central Google Scholar
Chen, H.Z. et al. Prolyl isomerase Pin1 stabilizes and activates orphan nuclear receptor TR3 to promote mitogenesis. Oncogene31, 2876–2887 (2012). ArticleCASPubMed Google Scholar
Zhan, Y. et al. Cytosporone B is an agonist for nuclear orphan receptor Nur77. Nat. Chem. Biol.4, 548–556 (2008). ArticleCASPubMed Google Scholar
Liu, J.J. et al. A unique pharmacophore for activation of the nuclear orphan receptor Nur77 in vivo and in vitro. Cancer Res.70, 3628–3637 (2010). ArticleCASPubMed Google Scholar
Zhan, Y.Y. et al. The orphan nuclear receptor Nur77 regulates LKB1 localization and activates AMPK. Nat. Chem. Biol.8, 897–904 (2012). ArticleCASPubMed Google Scholar
Mizushima, N., Yoshimori, T. & Ohsumi, Y. The role of Atg proteins in autophagosome formation. Annu. Rev. Cell Dev. Biol.27, 107–132 (2011). ArticleCASPubMed Google Scholar
Declercq, W., Vanden Berghe, T. & Vandenabeele, P. RIP kinases at the crossroads of cell death and survival. Cell138, 229–232 (2009). ArticleCASPubMed Google Scholar
Modjtahedi, N., Giordanetto, F., Madeo, F. & Kroemer, G. Apoptosis-inducing factor: vital and lethal. Trends Cell Biol.16, 264–272 (2006). ArticleCASPubMed Google Scholar
Chen, H.Z. et al. Akt phosphorylates the TR3 orphan receptor and blocks its targeting to the mitochondria. Carcinogenesis29, 2078–2088 (2008). ArticleCASPubMed Google Scholar
Lin, B. et al. Conversion of Bcl-2 from protector to killer by interaction with nuclear orphan receptor Nur77/TR3. Cell116, 527–540 (2004). ArticleCASPubMed Google Scholar
Zhang, J. & Ney, P.A. Role of BNIP3 and NIX in cell death, autophagy, and mitophagy. Cell Death Differ.16, 939–946 (2009). ArticleCASPubMed Google Scholar
Narendra, D., Tanaka, A., Suen, D.F. & Youle, R.J. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell Biol.183, 795–803 (2008). ArticleCASPubMedPubMed Central Google Scholar
Kroemer, G., Galluzzi, L. & Brenner, C. Mitochondrial membrane permeabilization in cell death. Physiol. Rev.87, 99–163 (2007). ArticleCASPubMed Google Scholar
Jin, S.M. et al. Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL. J. Cell Biol.191, 933–942 (2010). ArticleCASPubMedPubMed Central Google Scholar
Zhan, Y.Y. & Wu, Q. Translocation of orphan receptor TR3 from nuclei to mitochondria induced by staurosporine. Ai Zheng23, 1593–1598 (2004). CASPubMed Google Scholar
Tormo, D. et al. Targeted activation of innate immunity for therapeutic induction of autophagy and apoptosis in melanoma cells. Cancer Cell16, 103–114 (2009). ArticleCASPubMedPubMed Central Google Scholar
Ackermann, J. et al. Metastasizing melanoma formation caused by expression of activated N-RasQ61K on an INK4a-deficient background. Cancer Res.65, 4005–4011 (2005). ArticleCASPubMed Google Scholar
Yu, H., Kumar, S.M., Fang, D., Acs, G. & Xu, X. Nuclear orphan receptor TR3/Nur77 mediates melanoma cell apoptosis. Cancer Biol. Ther.6, 405–412 (2007). ArticleCASPubMed Google Scholar
Baker, K.D. et al. The Drosophila orphan nuclear receptor DHR38 mediates an atypical ecdysteroid signaling pathway. Cell113, 731–742 (2003). ArticleCASPubMed Google Scholar
Wang, Z. et al. Structure and function of Nurr1 identifies a class of ligand-independent nuclear receptors. Nature423, 555–560 (2003). ArticleCASPubMed Google Scholar
Moll, U.M., Marchenko, N. & Zhang, X.K. p53 and Nur77/TR3—transcription factors that directly target mitochondria for cell death induction. Oncogene25, 4725–4743 (2006). ArticleCASPubMed Google Scholar
Vogelzang, N.J. et al. Clinical cancer advances 2011: annual report on progress against cancer from the American society of clinical oncology. J. Clin. Oncol.30, 88–109 (2012). ArticlePubMed Google Scholar
Das Thakur, M. et al. Modelling vemurafenib resistance in melanoma reveals a strategy to forestall drug resistance. Nature494, 251–255 (2013). ArticleCASPubMed Google Scholar
Chung, H. et al. Ethambutol-induced toxicity is mediated by zinc and lysosomal membrane permeabilization in cultured retinal cells. Toxicol. Appl. Pharmacol.235, 163–170 (2009). ArticleCASPubMed Google Scholar
Noonan, J. et al. Endocannabinoids prevent β-amyloid–mediated lysosomal destabilization in cultured neurons. J. Biol. Chem.285, 38543–38554 (2010). ArticleCASPubMedPubMed Central Google Scholar
Emsley, P., Lohkamp, B., Scott, W.G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr.66, 486–501 (2010). CASPubMedPubMed Central Google Scholar
Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr.50, 760–763 (1994).
Murshudov, G.N. et al. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D Biol. Crystallogr.67, 355–367 (2011). ArticleCASPubMedPubMed Central Google Scholar
Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr.53, 240–255 (1997). CASPubMed Google Scholar