Spliceostatin A targets SF3b and inhibits both splicing and nuclear retention of pre-mRNA (original) (raw)

References

  1. Kramer, A. The structure and function of proteins involved in mammalian pre-mRNA splicing. Annu. Rev. Biochem. 65, 367–409 (1996).
    Article PubMed CAS Google Scholar
  2. Padgett, R.A., Konarska, M.M., Grabowski, P.J., Hardy, S.F. & Sharp, P.A. Lariat RNA's as intermediates and products in the splicing of messenger RNA precursors. Science 225, 898–903 (1984).
    Article PubMed CAS Google Scholar
  3. Ruskin, B., Krainer, A.R., Maniatis, T. & Green, M.R. Excision of an intact intron as a novel lariat structure during pre-mRNA splicing in vitro. Cell 38, 317–331 (1984).
    Article PubMed CAS Google Scholar
  4. Nagai, K. et al. Structure and assembly of the spliceosomal snRNPs. Novartis Medal Lecture. Biochem. Soc. Trans. 29, 15–26 (2001).
    Article PubMed CAS Google Scholar
  5. Black, D.L., Chabot, B. & Steitz, J.A. U2 as well as U1 small nuclear ribonucleoproteins are involved in premessenger RNA splicing. Cell 42, 737–750 (1985).
    Article PubMed CAS Google Scholar
  6. Mount, S.M., Pettersson, I., Hinterberger, M., Karmas, A. & Steitz, J.A. The U1 small nuclear RNA-protein complex selectively binds a 5′ splice site in vitro. Cell 33, 509–518 (1983).
    Article PubMed CAS Google Scholar
  7. Berglund, J.A., Chua, K., Abovich, N., Reed, R. & Rosbash, M. The splicing factor BBP interacts specifically with the pre-mRNA branchpoint sequence UACUAAC. Cell 89, 781–787 (1997).
    Article PubMed CAS Google Scholar
  8. Zamore, P.D. & Green, M.R. Identification, purification, and biochemical characterization of U2 small nuclear ribonucleoprotein auxiliary factor. Proc. Natl. Acad. Sci. USA 86, 9243–9247 (1989).
    Article PubMed CAS PubMed Central Google Scholar
  9. Gozani, O., Potashkin, J. & Reed, R. A potential role for U2AF-SAP 155 interactions in recruiting U2 snRNP to the branch site. Mol. Cell. Biol. 18, 4752–4760 (1998).
    Article PubMed PubMed Central CAS Google Scholar
  10. Konarska, M.M. & Sharp, P.A. Interactions between small nuclear ribonucleoprotein particles in formation of spliceosomes. Cell 49, 763–774 (1987).
    Article PubMed CAS Google Scholar
  11. Pikielny, C.W., Rymond, B.C. & Rosbash, M. Electrophoresis of ribonucleoproteins reveals an ordered assembly pathway of yeast splicing complexes. Nature 324, 341–345 (1986).
    Article PubMed CAS Google Scholar
  12. Rutz, B. & Seraphin, B. Transient interaction of BBP/ScSF1 and Mud2 with the splicing machinery affects the kinetics of spliceosome assembly. RNA 5, 819–831 (1999).
    Article PubMed PubMed Central CAS Google Scholar
  13. Staley, J.P. & Guthrie, C. Mechanical devices of the spliceosome: motors, clocks, springs, and things. Cell 92, 315–326 (1998).
    Article PubMed CAS Google Scholar
  14. Galy, V. et al. Nuclear retention of unspliced mRNAs in yeast is mediated by perinuclear Mlp1. Cell 116, 63–73 (2004).
    Article PubMed CAS Google Scholar
  15. Maquat, L.E. When cells stop making sense: effects of nonsense codons on RNA metabolism in vertebrate cells. RNA 1, 453–465 (1995).
    PubMed PubMed Central CAS Google Scholar
  16. Dziembowski, A. et al. Proteomic analysis identifies a new complex required for nuclear pre-mRNA retention and splicing. EMBO J. 23, 4847–4856 (2004).
    Article PubMed PubMed Central CAS Google Scholar
  17. Wang, Q., He, J., Lynn, B. & Rymond, B.C. Interactions of the yeast SF3b splicing factor. Mol. Cell. Biol. 25, 10745–10754 (2005).
    Article PubMed PubMed Central CAS Google Scholar
  18. Nakajima, H. et al. New antitumor substances, FR901463, FR901464 and FR901465. I. Taxonomy, fermentation, isolation, physico-chemical properties and biological activities. J. Antibiot. (Tokyo) 49, 1196–1203 (1996).
    Article CAS Google Scholar
  19. Nakajima, H. et al. New antitumor substances, FR901463, FR901464 and FR901465. II. Activities against experimental tumors in mice and mechanism of action. J. Antibiot. (Tokyo) 49, 1204–1211 (1996).
    Article CAS Google Scholar
  20. Nakajima, H., Kim, Y.B., Terano, H., Yoshida, M. & Horinouchi, S. FR901228, a potent antitumor antibiotic, is a novel histone deacetylase inhibitor. Exp. Cell Res. 241, 126–133 (1998).
    Article PubMed CAS Google Scholar
  21. Malumbres, M. & Barbacid, M. Mammalian cyclin-dependent kinases. Trends Biochem. Sci. 30, 630–641 (2005).
    Article PubMed CAS Google Scholar
  22. Harper, J.W., Adami, G.R., Wei, N., Keyomarsi, K. & Elledge, S.J. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75, 805–816 (1993).
    Article PubMed CAS Google Scholar
  23. Polyak, K. et al. Cloning of p27Kip1, a cyclin-dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals. Cell 78, 59–66 (1994).
    Article PubMed CAS Google Scholar
  24. Serrano, M., Hannon, G.J. & Beach, D. A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature 366, 704–707 (1993).
    Article PubMed CAS Google Scholar
  25. Pagano, M. et al. Role of the ubiquitin-proteasome pathway in regulating abundance of the cyclin-dependent kinase inhibitor p27. Science 269, 682–685 (1995).
    Article PubMed CAS Google Scholar
  26. Motoyoshi, H. et al. Structure-activity relationship for FR901464: a versatile method for the conversion and preparation of biologically active biotinylated probes. Biosci. Biotechnol. Biochem. 68, 2178–2182 (2004).
    Article PubMed CAS Google Scholar
  27. Albert, B.J., Sivaramakrishnan, A., Naka, T., Czaicki, N.L. & Koide, K. Total syntheses, fragmentation studies, and antitumor/antiproliferative activities of FR901464 and its low picomolar analogue. J. Am. Chem. Soc. 129, 2648–2659 (2007).
    Article PubMed PubMed Central CAS Google Scholar
  28. Thompson, C.F., Jamison, T.F. & Jacobsen, E.N. FR901464: total synthesis, proof of structure, and evaluation of synthetic analogues. J. Am. Chem. Soc. 123, 9974–9983 (2001).
    Article PubMed CAS Google Scholar
  29. Krainer, A.R., Maniatis, T., Ruskin, B. & Green, M.R. Normal and mutant human beta-globin pre-mRNAs are faithfully and efficiently spliced in vitro. Cell 36, 993–1005 (1984).
    Article PubMed CAS Google Scholar
  30. Watakabe, A., Inoue, K., Sakamoto, H. & Shimura, Y. A secondary structure at the 3′ splice site affects the in vitro splicing reaction of mouse immunoglobulin mu chain pre-mRNAs. Nucleic Acids Res. 17, 8159–8169 (1989).
    Article PubMed PubMed Central CAS Google Scholar
  31. Reed, R. & Hurt, E. A conserved mRNA export machinery coupled to pre-mRNA splicing. Cell 108, 523–531 (2002).
    Article PubMed CAS Google Scholar
  32. O'Keefe, R.T., Mayeda, A., Sadowski, C.L., Krainer, A.R. & Spector, D.L. Disruption of pre-mRNA splicing in vivo results in reorganization of splicing factors. J. Cell Biol. 124, 249–260 (1994).
    Article PubMed CAS Google Scholar
  33. Misteli, T., Caceres, J.F. & Spector, D.L. The dynamics of a pre-mRNA splicing factor in living cells. Nature 387, 523–527 (1997).
    Article PubMed CAS Google Scholar
  34. Tanackovic, G. & Kramer, A. Human splicing factor SF3a, but not SF1, is essential for pre-mRNA splicing in vivo. Mol. Biol. Cell 16, 1366–1377 (2005).
    Article PubMed PubMed Central CAS Google Scholar
  35. Das, B.K. et al. Characterization of a protein complex containing spliceosomal proteins SAPs 49, 130, 145, and 155. Mol. Cell. Biol. 19, 6796–6802 (1999).
    Article PubMed PubMed Central CAS Google Scholar
  36. Ishida, N. et al. Phosphorylation of p27Kip1 on serine 10 is required for its binding to CRM1 and nuclear export. J. Biol. Chem. 277, 14355–14358 (2002).
    Article PubMed CAS Google Scholar
  37. Kudo, N. et al. Leptomycin B inhibition of signal-mediated nuclear export by direct binding to CRM1. Exp. Cell Res. 242, 540–547 (1998).
    Article PubMed CAS Google Scholar
  38. Reed, R. & Magni, K. A new view of mRNA export: separating the wheat from the chaff. Nat. Cell Biol. 3, E201–E204 (2001).
    Article PubMed CAS Google Scholar
  39. Rutz, B. & Seraphin, B. A dual role for BBP/ScSF1 in nuclear pre-mRNA retention and splicing. EMBO J. 19, 1873–1886 (2000).
    Article PubMed PubMed Central CAS Google Scholar
  40. Abovich, N. & Rosbash, M. Cross-intron bridging interactions in the yeast commitment complex are conserved in mammals. Cell 89, 403–412 (1997).
    Article PubMed CAS Google Scholar
  41. Nagy, E. & Maquat, L.E. A rule for termination-codon position within intron-containing genes: when nonsense affects RNA abundance. Trends Biochem. Sci. 23, 198–199 (1998).
    Article PubMed CAS Google Scholar
  42. Maquat, L.E. & Li, X. Mammalian heat shock p70 and histone H4 transcripts, which derive from naturally intronless genes, are immune to nonsense-mediated decay. RNA 7, 445–456 (2001).
    Article PubMed PubMed Central CAS Google Scholar
  43. Gehring, N.H., Neu-Yilik, G., Schell, T., Hentze, M.W. & Kulozik, A.E. Y14 and hUpf3b form an NMD-activating complex. Mol. Cell 11, 939–949 (2003).
    Article PubMed CAS Google Scholar
  44. Lander, E.S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).
    Article PubMed CAS Google Scholar
  45. Montagnoli, A. et al. Ubiquitination of p27 is regulated by Cdk-dependent phosphorylation and trimeric complex formation. Genes Dev. 13, 1181–1189 (1999).
    Article PubMed PubMed Central CAS Google Scholar
  46. Fukuhara, T. et al. Utilization of host SR protein kinases and RNA-splicing machinery during viral replication. Proc. Natl. Acad. Sci. USA 103, 11329–11333 (2006).
    Article PubMed CAS PubMed Central Google Scholar
  47. Hamamoto, T., Gunji, S., Tsuji, H. & Beppu, T. Leptomycins A and B, new antifungal antibiotics. I. Taxonomy of the producing strain and their fermentation, purification and characterization. J. Antibiot. (Tokyo) 36, 639–645 (1983).
    Article CAS Google Scholar
  48. Dignam, J.D., Lebovitz, R.M. & Roeder, R.G. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 11, 1475–1489 (1983).
    Article PubMed PubMed Central CAS Google Scholar

Download references