Spliceostatin A targets SF3b and inhibits both splicing and nuclear retention of pre-mRNA (original) (raw)
References
Kramer, A. The structure and function of proteins involved in mammalian pre-mRNA splicing. Annu. Rev. Biochem.65, 367–409 (1996). ArticlePubMedCAS Google Scholar
Padgett, R.A., Konarska, M.M., Grabowski, P.J., Hardy, S.F. & Sharp, P.A. Lariat RNA's as intermediates and products in the splicing of messenger RNA precursors. Science225, 898–903 (1984). ArticlePubMedCAS Google Scholar
Ruskin, B., Krainer, A.R., Maniatis, T. & Green, M.R. Excision of an intact intron as a novel lariat structure during pre-mRNA splicing in vitro. Cell38, 317–331 (1984). ArticlePubMedCAS Google Scholar
Nagai, K. et al. Structure and assembly of the spliceosomal snRNPs. Novartis Medal Lecture. Biochem. Soc. Trans.29, 15–26 (2001). ArticlePubMedCAS Google Scholar
Black, D.L., Chabot, B. & Steitz, J.A. U2 as well as U1 small nuclear ribonucleoproteins are involved in premessenger RNA splicing. Cell42, 737–750 (1985). ArticlePubMedCAS Google Scholar
Mount, S.M., Pettersson, I., Hinterberger, M., Karmas, A. & Steitz, J.A. The U1 small nuclear RNA-protein complex selectively binds a 5′ splice site in vitro. Cell33, 509–518 (1983). ArticlePubMedCAS Google Scholar
Berglund, J.A., Chua, K., Abovich, N., Reed, R. & Rosbash, M. The splicing factor BBP interacts specifically with the pre-mRNA branchpoint sequence UACUAAC. Cell89, 781–787 (1997). ArticlePubMedCAS Google Scholar
Zamore, P.D. & Green, M.R. Identification, purification, and biochemical characterization of U2 small nuclear ribonucleoprotein auxiliary factor. Proc. Natl. Acad. Sci. USA86, 9243–9247 (1989). ArticlePubMedCASPubMed Central Google Scholar
Gozani, O., Potashkin, J. & Reed, R. A potential role for U2AF-SAP 155 interactions in recruiting U2 snRNP to the branch site. Mol. Cell. Biol.18, 4752–4760 (1998). ArticlePubMedPubMed CentralCAS Google Scholar
Konarska, M.M. & Sharp, P.A. Interactions between small nuclear ribonucleoprotein particles in formation of spliceosomes. Cell49, 763–774 (1987). ArticlePubMedCAS Google Scholar
Pikielny, C.W., Rymond, B.C. & Rosbash, M. Electrophoresis of ribonucleoproteins reveals an ordered assembly pathway of yeast splicing complexes. Nature324, 341–345 (1986). ArticlePubMedCAS Google Scholar
Rutz, B. & Seraphin, B. Transient interaction of BBP/ScSF1 and Mud2 with the splicing machinery affects the kinetics of spliceosome assembly. RNA5, 819–831 (1999). ArticlePubMedPubMed CentralCAS Google Scholar
Staley, J.P. & Guthrie, C. Mechanical devices of the spliceosome: motors, clocks, springs, and things. Cell92, 315–326 (1998). ArticlePubMedCAS Google Scholar
Galy, V. et al. Nuclear retention of unspliced mRNAs in yeast is mediated by perinuclear Mlp1. Cell116, 63–73 (2004). ArticlePubMedCAS Google Scholar
Maquat, L.E. When cells stop making sense: effects of nonsense codons on RNA metabolism in vertebrate cells. RNA1, 453–465 (1995). PubMedPubMed CentralCAS Google Scholar
Dziembowski, A. et al. Proteomic analysis identifies a new complex required for nuclear pre-mRNA retention and splicing. EMBO J.23, 4847–4856 (2004). ArticlePubMedPubMed CentralCAS Google Scholar
Nakajima, H. et al. New antitumor substances, FR901463, FR901464 and FR901465. I. Taxonomy, fermentation, isolation, physico-chemical properties and biological activities. J. Antibiot. (Tokyo)49, 1196–1203 (1996). ArticleCAS Google Scholar
Nakajima, H. et al. New antitumor substances, FR901463, FR901464 and FR901465. II. Activities against experimental tumors in mice and mechanism of action. J. Antibiot. (Tokyo)49, 1204–1211 (1996). ArticleCAS Google Scholar
Nakajima, H., Kim, Y.B., Terano, H., Yoshida, M. & Horinouchi, S. FR901228, a potent antitumor antibiotic, is a novel histone deacetylase inhibitor. Exp. Cell Res.241, 126–133 (1998). ArticlePubMedCAS Google Scholar
Malumbres, M. & Barbacid, M. Mammalian cyclin-dependent kinases. Trends Biochem. Sci.30, 630–641 (2005). ArticlePubMedCAS Google Scholar
Harper, J.W., Adami, G.R., Wei, N., Keyomarsi, K. & Elledge, S.J. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell75, 805–816 (1993). ArticlePubMedCAS Google Scholar
Polyak, K. et al. Cloning of p27Kip1, a cyclin-dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals. Cell78, 59–66 (1994). ArticlePubMedCAS Google Scholar
Serrano, M., Hannon, G.J. & Beach, D. A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature366, 704–707 (1993). ArticlePubMedCAS Google Scholar
Pagano, M. et al. Role of the ubiquitin-proteasome pathway in regulating abundance of the cyclin-dependent kinase inhibitor p27. Science269, 682–685 (1995). ArticlePubMedCAS Google Scholar
Motoyoshi, H. et al. Structure-activity relationship for FR901464: a versatile method for the conversion and preparation of biologically active biotinylated probes. Biosci. Biotechnol. Biochem.68, 2178–2182 (2004). ArticlePubMedCAS Google Scholar
Albert, B.J., Sivaramakrishnan, A., Naka, T., Czaicki, N.L. & Koide, K. Total syntheses, fragmentation studies, and antitumor/antiproliferative activities of FR901464 and its low picomolar analogue. J. Am. Chem. Soc.129, 2648–2659 (2007). ArticlePubMedPubMed CentralCAS Google Scholar
Thompson, C.F., Jamison, T.F. & Jacobsen, E.N. FR901464: total synthesis, proof of structure, and evaluation of synthetic analogues. J. Am. Chem. Soc.123, 9974–9983 (2001). ArticlePubMedCAS Google Scholar
Krainer, A.R., Maniatis, T., Ruskin, B. & Green, M.R. Normal and mutant human beta-globin pre-mRNAs are faithfully and efficiently spliced in vitro. Cell36, 993–1005 (1984). ArticlePubMedCAS Google Scholar
Watakabe, A., Inoue, K., Sakamoto, H. & Shimura, Y. A secondary structure at the 3′ splice site affects the in vitro splicing reaction of mouse immunoglobulin mu chain pre-mRNAs. Nucleic Acids Res.17, 8159–8169 (1989). ArticlePubMedPubMed CentralCAS Google Scholar
Reed, R. & Hurt, E. A conserved mRNA export machinery coupled to pre-mRNA splicing. Cell108, 523–531 (2002). ArticlePubMedCAS Google Scholar
O'Keefe, R.T., Mayeda, A., Sadowski, C.L., Krainer, A.R. & Spector, D.L. Disruption of pre-mRNA splicing in vivo results in reorganization of splicing factors. J. Cell Biol.124, 249–260 (1994). ArticlePubMedCAS Google Scholar
Misteli, T., Caceres, J.F. & Spector, D.L. The dynamics of a pre-mRNA splicing factor in living cells. Nature387, 523–527 (1997). ArticlePubMedCAS Google Scholar
Tanackovic, G. & Kramer, A. Human splicing factor SF3a, but not SF1, is essential for pre-mRNA splicing in vivo. Mol. Biol. Cell16, 1366–1377 (2005). ArticlePubMedPubMed CentralCAS Google Scholar
Das, B.K. et al. Characterization of a protein complex containing spliceosomal proteins SAPs 49, 130, 145, and 155. Mol. Cell. Biol.19, 6796–6802 (1999). ArticlePubMedPubMed CentralCAS Google Scholar
Ishida, N. et al. Phosphorylation of p27Kip1 on serine 10 is required for its binding to CRM1 and nuclear export. J. Biol. Chem.277, 14355–14358 (2002). ArticlePubMedCAS Google Scholar
Kudo, N. et al. Leptomycin B inhibition of signal-mediated nuclear export by direct binding to CRM1. Exp. Cell Res.242, 540–547 (1998). ArticlePubMedCAS Google Scholar
Reed, R. & Magni, K. A new view of mRNA export: separating the wheat from the chaff. Nat. Cell Biol.3, E201–E204 (2001). ArticlePubMedCAS Google Scholar
Abovich, N. & Rosbash, M. Cross-intron bridging interactions in the yeast commitment complex are conserved in mammals. Cell89, 403–412 (1997). ArticlePubMedCAS Google Scholar
Nagy, E. & Maquat, L.E. A rule for termination-codon position within intron-containing genes: when nonsense affects RNA abundance. Trends Biochem. Sci.23, 198–199 (1998). ArticlePubMedCAS Google Scholar
Maquat, L.E. & Li, X. Mammalian heat shock p70 and histone H4 transcripts, which derive from naturally intronless genes, are immune to nonsense-mediated decay. RNA7, 445–456 (2001). ArticlePubMedPubMed CentralCAS Google Scholar
Gehring, N.H., Neu-Yilik, G., Schell, T., Hentze, M.W. & Kulozik, A.E. Y14 and hUpf3b form an NMD-activating complex. Mol. Cell11, 939–949 (2003). ArticlePubMedCAS Google Scholar
Lander, E.S. et al. Initial sequencing and analysis of the human genome. Nature409, 860–921 (2001). ArticlePubMedCAS Google Scholar
Montagnoli, A. et al. Ubiquitination of p27 is regulated by Cdk-dependent phosphorylation and trimeric complex formation. Genes Dev.13, 1181–1189 (1999). ArticlePubMedPubMed CentralCAS Google Scholar
Fukuhara, T. et al. Utilization of host SR protein kinases and RNA-splicing machinery during viral replication. Proc. Natl. Acad. Sci. USA103, 11329–11333 (2006). ArticlePubMedCASPubMed Central Google Scholar
Hamamoto, T., Gunji, S., Tsuji, H. & Beppu, T. Leptomycins A and B, new antifungal antibiotics. I. Taxonomy of the producing strain and their fermentation, purification and characterization. J. Antibiot. (Tokyo)36, 639–645 (1983). ArticleCAS Google Scholar
Dignam, J.D., Lebovitz, R.M. & Roeder, R.G. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res.11, 1475–1489 (1983). ArticlePubMedPubMed CentralCAS Google Scholar