Prakash, S., Tian, L., Ratliff, K.S., Lehotzky, R.E. & Matouschek, A. An unstructured initiation site is required for efficient proteasome-mediated degradation. Nat. Struct. Mol. Biol.11, 830–837 (2004). ArticleCAS Google Scholar
Takeuchi, J., Chen, H. & Coffino, P. Proteasome substrate degradation requires association plus extended peptide. EMBO J.26, 123–131 (2007). ArticleCAS Google Scholar
Schrader, E.K., Harstad, K.G. & Matouschek, A. Targeting proteins for degradation. Nat. Chem. Biol.5, 815–822 (2009). ArticleCAS Google Scholar
Thrower, J.S., Hoffman, L., Rechsteiner, M. & Pickart, C.M. Recognition of the polyubiquitin proteolytic signal. EMBO J.19, 94–102 (2000). ArticleCAS Google Scholar
Deveraux, Q., Ustrell, V., Pickart, C. & Rechsteiner, M. A 26 S protease subunit that binds ubiquitin conjugates. J. Biol. Chem.269, 7059–7061 (1994). CAS Google Scholar
Lam, Y.A., Lawson, T.G., Velayutham, M., Zweier, J.L. & Pickart, C.M. A proteasomal ATPase subunit recognizes the polyubiquitin degradation signal. Nature416, 763–767 (2002). ArticleCAS Google Scholar
Husnjak, K. et al. Proteasome subunit Rpn13 is a novel ubiquitin receptor. Nature453, 481–488 (2008). ArticleCAS Google Scholar
Elsasser, S. & Finley, D. Delivery of ubiquitinated substrates to protein-unfolding machines. Nat. Cell Biol.7, 742–749 (2005). ArticleCAS Google Scholar
Finley, D. Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu. Rev. Biochem.78, 477–513 (2009). ArticleCAS Google Scholar
Hiyama, H. et al. Interaction of hHR23 with S5a. The ubiquitin-like domain of hHR23 mediates interaction with S5a subunit of 26 S proteasome. J. Biol. Chem.274, 28019–28025 (1999). ArticleCAS Google Scholar
Elsasser, S. et al. Proteasome subunit Rpn1 binds ubiquitin-like protein domains. Nat. Cell Biol.4, 725–730 (2002). ArticleCAS Google Scholar
Saeki, Y., Sone, T., Toh-e, A. & Yokosawa, H. Identification of ubiquitin-like protein-binding subunits of the 26S proteasome. Biochem. Biophys. Res. Commun.296, 813–819 (2002). ArticleCAS Google Scholar
Prakash, S., Inobe, T., Hatch, A.J. & Matouschek, A. Substrate selection by the proteasome during degradation of protein complexes. Nat. Chem. Biol.5, 29–36 (2009). ArticleCAS Google Scholar
Johnson, E.S., Gonda, D.K. & Varshavsky, A. _cis_-trans recognition and subunit-specific degradation of short-lived proteins. Nature346, 287–291 (1990). ArticleCAS Google Scholar
Hochstrasser, M. & Varshavsky, A. In vivo degradation of a transcriptional regulator: the yeast alpha 2 repressor. Cell61, 697–708 (1990). ArticleCAS Google Scholar
Klotzbücher, A., Stewart, E., Harrison, D. & Hunt, T. The 'destruction box' of cyclin A allows B-type cyclins to be ubiquitinated, but not efficiently destroyed. EMBO J.15, 3053–3064 (1996). Article Google Scholar
Verma, R., McDonald, H., Yates, J.R. & Deshaies, R.J. Selective degradation of ubiquitinated Sic1 by purified 26S proteasome yields active S phase cyclin-Cdk. Mol. Cell8, 439–448 (2001). ArticleCAS Google Scholar
Stack, J.H., Whitney, M., Rodems, S.M. & Pollok, B.A. A ubiquitin-based tagging system for controlled modulation of protein stability. Nat. Biotechnol.18, 1298–1302 (2000). ArticleCAS Google Scholar
Komander, D. et al. Molecular discrimination of structurally equivalent Lys 63-linked and linear polyubiquitin chains. EMBO Rep.10, 466–473 (2009). ArticleCAS Google Scholar
Saeki, Y. et al. Lysine 63-linked polyubiquitin chain may serve as a targeting signal for the 26S proteasome. EMBO J.28, 359–371 (2009). ArticleCAS Google Scholar
Watkins, J.F., Sung, P., Prakash, L. & Prakash, S. The Saccharomyces cerevisiae DNA repair gene RAD23 encodes a nuclear protein containing a ubiquitin-like domain required for biological function. Mol. Cell. Biol.13, 7757–7765 (1993). ArticleCAS Google Scholar
Schauber, C. et al. Rad23 links DNA repair to the ubiquitin/proteasome pathway. Nature391, 715–718 (1998). ArticleCAS Google Scholar
Johnston, J.A., Johnson, E.S., Waller, P.R. & Varshavsky, A. Methotrexate inhibits proteolysis of dihydrofolate reductase by the N-end rule pathway. J. Biol. Chem.270, 8172–8178 (1995). ArticleCAS Google Scholar
Verhoef, L.G. et al. Minimal length requirement for proteasomal degradation of ubiquitin-dependent substrates. FASEB J.23, 123–133 (2009). ArticleCAS Google Scholar
Politou, A.S., Gautel, M., Pfuhl, M., Labeit, S. & Pastore, A. Immunoglobulin-type domains of titin: same fold, different stability? Biochemistry33, 4730–4737 (1994). ArticleCAS Google Scholar
Rief, M., Gautel, M., Oesterhelt, F., Fernandez, J.M. & Gaub, H.E. Reversible unfolding of individual titin immunoglobulin domains by AFM. Science276, 1109–1112 (1997). ArticleCAS Google Scholar
Improta, S., Politou, A.S. & Pastore, A. Immunoglobulin-like modules from titin I-band: extensible components of muscle elasticity. Structure4, 323–337 (1996). ArticleCAS Google Scholar
von Castelmur, E. et al. A regular pattern of Ig super-motifs defines segmental flexibility as the elastic mechanism of the titin chain. Proc. Natl. Acad. Sci. USA105, 1186–1191 (2008). ArticleCAS Google Scholar
Yang, T.T., Cheng, L. & Kain, S.R. Optimized codon usage and chromophore mutations provide enhanced sensitivity with the green fluorescent protein. Nucleic Acids Res.24, 4592–4593 (1996). ArticleCAS Google Scholar
Adams, S.R. et al. New biarsenical ligands and tetracysteine motifs for protein labeling in vitro and in vivo: synthesis and biological applications. J. Am. Chem. Soc.124, 6063–6076 (2002). ArticleCAS Google Scholar
Beskow, A. et al. A conserved unfoldase activity for the p97 AAA-ATPase in proteasomal degradation. J. Mol. Biol.394, 732–746 (2009). ArticleCAS Google Scholar
Tian, L., Holmgren, R.A. & Matouschek, A. A conserved processing mechanism regulates the activity of transcription factors Cubitus interruptus and NF-κB. Nat. Struct. Mol. Biol.12, 1045–1053 (2005). ArticleCAS Google Scholar
Larsen, C.N. & Finley, D. Protein translocation channels in the proteasome and other proteases. Cell91, 431–434 (1997). ArticleCAS Google Scholar
Baumeister, W., Walz, J., Zühl, F. & Seemüller, E. The proteasome: paradigm of a self-compartmentalizing protease. Cell92, 367–380 (1998). ArticleCAS Google Scholar
Keiler, K.C., Waller, P.R. & Sauer, R.T. Role of a peptide tagging system in degradation of proteins synthesized from damaged messenger RNA. Science271, 990–993 (1996). ArticleCAS Google Scholar
Gottesman, S., Roche, E., Zhou, Y. & Sauer, R.T. The ClpXP and ClpAP proteases degrade proteins with carboxy-terminal peptide tails added by the SsrA-tagging system. Genes Dev.12, 1338–1347 (1998). ArticleCAS Google Scholar
Flynn, J.M., Neher, S.B., Kim, Y.I., Sauer, R.T. & Baker, T.A. Proteomic discovery of cellular substrates of the ClpXP protease reveals five classes of ClpX-recognition signals. Mol. Cell11, 671–683 (2003). ArticleCAS Google Scholar
Gonzalez, M., Frank, E.G., Levine, A.S. & Woodgate, R. Lon-mediated proteolysis of the Escherichia coli UmuD mutagenesis protein: in vitro degradation and identification of residues required for proteolysis. Genes Dev.12, 3889–3899 (1998). ArticleCAS Google Scholar
Yamada-Inagawa, T., Okuno, T., Karata, K., Yamanaka, K. & Ogura, T. Conserved pore residues in the AAA protease FtsH are important for proteolysis and its coupling to ATP hydrolysis. J. Biol. Chem.278, 50182–50187 (2003). ArticleCAS Google Scholar
Hinnerwisch, J., Fenton, W.A., Furtak, K.J., Farr, G.W. & Horwich, A.L. Loops in the central channel of ClpA chaperone mediate protein binding, unfolding, and translocation. Cell121, 1029–1041 (2005). ArticleCAS Google Scholar
Martin, A., Baker, T.A. & Sauer, R.T. Diverse pore loops of the AAA+ ClpX machine mediate unassisted and adaptor-dependent recognition of ssrA-tagged substrates. Mol. Cell29, 441–450 (2008). ArticleCAS Google Scholar
Zhang, F. et al. Mechanism of substrate unfolding and translocation by the regulatory particle of the proteasome from Methanocaldococcus jannaschii. Mol. Cell34, 485–496 (2009). ArticleCAS Google Scholar
Djuranovic, S. et al. Structure and activity of the N-terminal substrate recognition domains in proteasomal ATPases. Mol. Cell34, 580–590 (2009). ArticleCAS Google Scholar
Miller, W.G. & Goebel, C.V. Dimensions of protein random coils. Biochemistry7, 3925–3935 (1968). ArticleCAS Google Scholar
Heessen, S., Masucci, M.G. & Dantuma, N.P. The UBA2 domain functions as an intrinsic stabilization signal that protects Rad23 from proteasomal degradation. Mol. Cell18, 225–235 (2005). ArticleCAS Google Scholar
Levchenko, I., Grant, R.A., Flynn, J.M., Sauer, R.T. & Baker, T.A. Versatile modes of peptide recognition by the AAA+ adaptor protein SspB. Nat. Struct. Mol. Biol.12, 520–525 (2005). ArticleCAS Google Scholar
McGinness, K.E., Bolon, D.N., Kaganovich, M., Baker, T.A. & Sauer, R.T. Altered tethering of the SspB adaptor to the ClpXP protease causes changes in substrate delivery. J. Biol. Chem.282, 11465–11473 (2007). ArticleCAS Google Scholar
Rood, J.I., Laird, A.J. & Williams, J.W. Cloning of the Escherichia coli K-12 dihydrofolate reductase gene following mu-mediated transposition. Gene8, 255–265 (1980). ArticleCAS Google Scholar
Saeki, Y., Isono, E. & Toh-E, A. Preparation of ubiquitinated substrates by the PY motif-insertion method for monitoring 26S proteasome activity. Methods Enzymol.399, 215–227 (2005). ArticleCAS Google Scholar