Imaging single events at the cell membrane (original) (raw)

References

  1. Neher, E. & Sakmann, B. Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature 260, 799–802 (1976).
    Article CAS Google Scholar
  2. Sakmann, B. & Neher, E. Patch clamp techniques for studying ionic channels in excitable membranes. Annu. Rev. Physiol. 46, 455–472 (1984).
    Article CAS Google Scholar
  3. Sakmann, B. Elementary steps in synaptic transmission revealed by currents through single ion channels. Science 256, 503–512 (1992).
    Article CAS Google Scholar
  4. Angleson, J.K. & Betz, W.J. Monitoring secretion in real time: capacitance, amperometry and fluorescence compared. Trends Neurosci. 20, 281–287 (1997).
    Article CAS Google Scholar
  5. Mosharov, E.V. & Sulzer, D. Analysis of exocytotic events recorded by amperometry. Nat. Methods 2, 651–658 (2005).
    Article CAS Google Scholar
  6. Ruta, V., Chen, J. & MacKinnon, R. Calibrated measurement of gating-charge arginine displacement in the KvAP voltage-dependent K+ channel. Cell 123, 463–475 (2005).
    Article CAS Google Scholar
  7. White, S.H., Ladokhin, A.S., Jayasinghe, S. & Hristova, K. How membranes shape protein structure. J. Biol. Chem. 276, 32395–32398 (2001).
    Article CAS Google Scholar
  8. Gandhavadi, M., Allende, D., Vidal, A., Simon, S.A. & McIntosh, T.J. Structure, composition, and peptide binding properties of detergent soluble bilayers and detergent resistant rafts. Biophys. J. 82, 1469–1482 (2002).
    Article CAS Google Scholar
  9. Sekar, R.B. & Periasamy, A. Fluorescence resonance energy transfer (FRET) microscopy imaging of live cell protein localizations. J. Cell Biol. 160, 629–633 (2003).
    Article CAS Google Scholar
  10. Rust, M., Bates, M. & Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3, 793–795 (2006).
    Article CAS Google Scholar
  11. Denk, W., Strickler, J.H. & Webb, W.W. Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990).
    Article CAS Google Scholar
  12. Takahashi, N., Kishimoto, T., Nemoto, T., Kadowaki, T. & Kasai, H. Fusion pore dynamics and insulin granule exocytosis in the pancreatic islet. Science 297, 1349–1352 (2002).
    Article CAS Google Scholar
  13. Webb, W.W. Applications of fluorescence correlation spectroscopy. Q. Rev. Biophys. 9, 49–68 (1976).
    Article CAS Google Scholar
  14. Fahey, P.F. et al. Lateral diffusion in planar lipid bilayers. Science 195, 305–306 (1977).
    Article CAS Google Scholar
  15. Schwille, P., Korlach, J. & Webb, W.W. Fluorescence correlation spectroscopy with single-molecule sensitivity on cell and model membranes. Cytometry 36, 176–182 (1999).
    Article CAS Google Scholar
  16. Axelrod, D. Total internal reflection fluorescence microscopy in cell biology. Traffic 2, 764–774 (2001).
    Article CAS Google Scholar
  17. Axelrod, D. Cell-substrate contacts illuminated by total internal reflection fluorescence. J. Cell Biol. 89, 141–145 (1981).
    Article CAS Google Scholar
  18. Axelrod, D., Burghardt, T.P. & Thompson, N.L. Total internal reflection fluorescence. Annu. Rev. Biophys. Bioeng. 13, 247–268 (1984).
    Article CAS Google Scholar
  19. Kawano, Y. et al. High-numerical-aperture objective lenses and optical system improved objective type total internal reflection fluorescence microscopy. Proc. SPIE 4098, 142–151 (2000).
    Article CAS Google Scholar
  20. Axelrod, D. Selective imaging of surface fluorescence with very high aperture microscope objectives. J. Biomed. Opt. 6, 6–13 (2001).
    Article CAS Google Scholar
  21. Schneckenburger, H. Total internal reflection fluorescence microscopy: technical innovations and novel applications. Curr. Opin. Biotechnol. 16, 13–18 (2005).
    Article CAS Google Scholar
  22. Kittel, R.J. et al. Bruchpilot promotes active zone assembly, Ca2+ channel clustering, and vesicle release. Science 312, 1051–1054 (2006).
    Article CAS Google Scholar
  23. Willig, K.I., Rizzoli, S.O., Westphal, V., Jahn, R. & Hell, S.W. STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature 440, 935–939 (2006).
    Article CAS Google Scholar
  24. Sieber, J.J., Willig, K.I., Heintzmann, R., Hell, S.W. & Lang, T. The SNARE motif is essential for the formation of syntaxin clusters in the plasma membrane. Biophys. J. 90, 2843–2851 (2006).
    Article CAS Google Scholar
  25. Shaner, N.C., Steinbach, P.A. & Tsien, R.Y. A guide to choosing fluorescent proteins. Nat. Methods 2, 905–909 (2005).
    Article CAS Google Scholar
  26. Giepmans, B.N., Adams, S.R., Ellisman, M.H. & Tsien, R.Y. The fluorescent toolbox for assessing protein location and function. Science 312, 217–224 (2006).
    Article CAS Google Scholar
  27. Tsien, R.Y. The green fluorescent protein. Annu. Rev. Biochem. 67, 509–544 (1998).
    Article CAS Google Scholar
  28. Griesbeck, O. Fluorescent proteins as sensors for cellular functions. Curr. Opin. Neurobiol. 14, 636–641 (2004).
    Article CAS Google Scholar
  29. Lippincott-Schwartz, J. & Smith, C.L. Insights into secretory and endocytic membrane traffic using green fluorescent protein chimeras. Curr. Opin. Neurobiol. 7, 631–639 (1997).
    Article CAS Google Scholar
  30. Lukyanov, K.A., Chudakov, D.M., Lukyanov, S. & Verkhusha, V.V. Innovation: photoactivatable fluorescent proteins. Nat. Rev. Mol. Cell Biol. 6, 885–891 (2005).
    Article CAS Google Scholar
  31. Lippincott-Schwartz, J., Altan-Bonnet, N. & Patterson, G.H. Photobleaching and photoactivation: following protein dynamics in living cells. Nat. Cell Biol. Suppl, S7–S14 (2003).
  32. Chudakov, D.M. & Lukyanov, K.A. Use of green fluorescent protein (GFP) and its homologs for in vivo protein motility studies. Biochemistry (Mosc.) 68, 952–957 (2003).
    Article CAS Google Scholar
  33. Hofmann, M., Eggeling, C., Jakobs, S. & Hell, S.W. Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins. Proc. Natl. Acad. Sci. USA 102, 17565–17569 (2005).
    Article CAS Google Scholar
  34. Betzig, et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).
    Article CAS Google Scholar
  35. Jaiswal, J.K., Goldman, E.R., Mattoussi, H. & Simon, S.M. Use of quantum dots for live cell imaging. Nat. Methods 1, 73–78 (2004).
    Article Google Scholar
  36. Jaiswal, J.K. & Simon, S.M. Potentials and pitfalls of fluorescent quantum dots for biological imaging. Trends Cell Biol. 14, 497–504 (2004).
    Article CAS Google Scholar
  37. Gao, X. et al. In vivo molecular and cellular imaging with quantum dots. Curr. Opin. Biotechnol. 16, 63–72 (2005).
    Article CAS Google Scholar
  38. Michalet, X. et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538–544 (2005).
    Article CAS Google Scholar
  39. Uyeda, H.T., Medintz, I.L., Jaiswal, J.K., Simon, S.M. & Mattoussi, H. Synthesis of compact multidentate ligands to prepare stable hydrophilic quantum dot fluorophores. J. Am. Chem. Soc. 127, 3870–3878 (2005).
    Article CAS Google Scholar
  40. An, S. & Zenisek, D. Regulation of exocytosis in neurons and neuroendocrine cells. Curr. Opin. Neurobiol. 14, 522–530 (2004).
    Article CAS Google Scholar
  41. Palfrey, H.C. & Artalejo, C.R. Secretion: kiss and run caught on film. Curr. Biol. 13, R397–R399 (2003).
    Article CAS Google Scholar
  42. Jaiswal, J.K., Chakrabarti, S., Andrews, N.W. & Simon, S.M. Synaptotagmin VII restricts fusion pore expansion during lysosomal exocytosis. PLoS Biol. 2, E233 (2004).
    Article Google Scholar
  43. Rink, J., Ghigo, E., Kalaidzidis, Y. & Zerial, M. Rab conversion as a mechanism of progression from early to late endosomes. Cell 122, 735–749 (2005).
    Article CAS Google Scholar
  44. Lampson, M.A., Schmoranzer, J., Zeigerer, A., Simon, S.M. & McGraw, T.E. Insulin-regulated release from the endosomal recycling compartment is regulated by budding of specialized vesicles. Mol. Biol. Cell 12, 3489–3501 (2001).
    Article CAS Google Scholar
  45. Oheim, M., Loerke, D., Stuhmer, W. & Chow, R.H. The last few milliseconds in the life of a secretory granule. Docking, dynamics and fusion visualized by total internal reflection fluorescence microscopy (TIRFM). Eur. Biophys. J. 27, 83–98 (1998).
    Article CAS Google Scholar
  46. Steyer, J.A., Horstmann, H. & Almers, W. Transport, docking and exocytosis of single secretory granules in live chromaffin cells. Nature 388, 474–478 (1997).
    Article CAS Google Scholar
  47. Kreitzer, G. et al. Three-dimensional analysis of post-Golgi carrier exocytosis in epithelial cells. Nat. Cell Biol. 5, 126–136 (2003).
    Article CAS Google Scholar
  48. Ma, L. et al. Direct imaging shows that insulin granule exocytosis occurs by complete vesicle fusion. Proc. Natl. Acad. Sci. USA 101, 9266–9271 (2004).
    Article CAS Google Scholar
  49. Ehrlich, M. et al. Endocytosis by random initiation and stabilization of clathrin-coated pits. Cell 118, 591–605 (2004).
    Article CAS Google Scholar
  50. Ohara-Imaizumi, M. et al. Monitoring of exocytosis and endocytosis of insulin secretory granules in the pancreatic beta-cell line MIN6 using pH-sensitive green fluorescent protein (pHluorin) and confocal laser microscopy. Biochem. J. 363, 73–80 (2002).
    Article CAS Google Scholar
  51. O'Connell, K.M. & Tamkun, M.M. Targeting of voltage-gated potassium channel isoforms to distinct cell surface microdomains. J. Cell Sci. 118, 2155–2166 (2005).
    Article CAS Google Scholar
  52. Massol, R.H., Larsen, J.E. & Kirchhausen, T. Possible role of deep tubular invaginations of the plasma membrane in MHC-I trafficking. Exp. Cell Res. 306, 142–149 (2005).
    Article CAS Google Scholar
  53. Lidke, D.S., Lidke, K.A., Rieger, B., Jovin, T.M. & Arndt-Jovin, D.J. Reaching out for signals: filopodia sense EGF and respond by directed retrograde transport of activated receptors. J. Cell Biol. 170, 619–626 (2005).
    Article CAS Google Scholar
  54. Warshaw, D.M. et al. Differential labeling of myosin V heads with quantum dots allows direct visualization of hand-over-hand processivity. Biophys. J. 88, L30–L32 (2005).
    Article CAS Google Scholar
  55. Dahan, M. et al. Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science 302, 442–445 (2003).
    Article CAS Google Scholar
  56. Courty, S., Luccardini, C., Bellaiche, Y., Cappello, G. & Dahan, M. Tracking individual kinesin motors in living cells using single quantum-dot imaging. Nano Lett. 6, 1491–1495 (2006).
    Article CAS Google Scholar
  57. Pramanik, A. & Rigler, R. Ligand-receptor interactions in the membrane of cultured cells monitored by fluorescence correlation spectroscopy. Biol. Chem. 382, 371–378 (2001).
    Article CAS Google Scholar
  58. Lieto, A.M., Cush, R.C. & Thompson, N.L. Ligand-receptor kinetics measured by total internal reflection with fluorescence correlation spectroscopy. Biophys. J. 85, 3294–3302 (2003).
    Article CAS Google Scholar
  59. Bacia, K., Scherfeld, D., Kahya, N. & Schwille, P. Fluorescence correlation spectroscopy relates rafts in model and native membranes. Biophys. J. 87, 1034–1043 (2004).
    Article CAS Google Scholar
  60. Ohsugi, Y., Saito, K., Tamura, M. & Kinjo, M. Lateral mobility of membrane-binding proteins in living cells measured by total internal reflection fluorescence correlation spectroscopy. Biophys. J. 91, 3456–3464 (2006).
    Article CAS Google Scholar
  61. Gustafsson, M.G. Extended resolution fluorescence microscopy. Curr. Opin. Struct. Biol. 9, 627–634 (1999).
    Article CAS Google Scholar
  62. Jaiswal, J.K., Andrews, N.W. & Simon, S.M. Membrane proximal lysosomes are the major vesicles responsible for calcium-dependent exocytosis in nonsecretory cells. J. Cell Biol. 159, 625–635 (2002).
    Article CAS Google Scholar
  63. Schmoranzer, J., Goulian, M., Axelrod, D. & Simon, S.M. Imaging constitutive exocytosis with total internal reflection fluorescence microscopy. J. Cell Biol. 149, 23–32 (2000).
    Article CAS Google Scholar
  64. Johns, L.M., Levitan, E.S., Shelden, E.A., Holz, R.W. & Axelrod, D. Restriction of secretory granule motion near the plasma membrane of chromaffin cells. J. Cell Biol. 153, 177–190 (2001).
    Article CAS Google Scholar
  65. Allersma, M.W., Bittner, M.A., Axelrod, D. & Holz, R.W. Motion matters: secretory granule motion adjacent to the plasma membrane and exocytosis. Mol. Biol. Cell 17, 2424–2438 (2006).
    Article CAS Google Scholar
  66. Rappoport, J.Z., Taha, B.W. & Simon, S.M. Movement of plasma-membrane-associated clathrin spots along the microtubule cytoskeleton. Traffic 4, 460–467 (2003).
    Article CAS Google Scholar
  67. Merrifield, C.J., Feldman, M.E., Wan, L. & Almers, W. Imaging actin and dynamin recruitment during invagination of single clathrin-coated pits. Nat. Cell Biol. 4, 691–698 (2002).
    Article CAS Google Scholar
  68. Merrifield, C.J., Perrais, D. & Zenisek, D. Coupling between clathrin-coated-pit invagination, cortactin recruitment, and membrane scission observed in live cells. Cell 121, 593–606 (2005).
    Article CAS Google Scholar
  69. Rappoport, J.Z., Benmerah, A. & Simon, S.M. Analysis of the AP-2 adaptor complex and cargo during clathrin-mediated endocytosis. Traffic 6, 539–547 (2005).
    Article CAS Google Scholar
  70. Habuchi, S. et al. Reversible single-molecule photoswitching in the GFP-like fluorescent protein Dronpa. Proc. Natl. Acad. Sci. USA 102, 9511–9516 (2005).
    Article CAS Google Scholar
  71. Sosa, H., Peterman, E.J., Moerner, W.E. & Goldstein, L.S. ADP-induced rocking of the kinesin motor domain revealed by single-molecule fluorescence polarization microscopy. Nat. Struct. Biol. 8, 540–544 (2001).
    Article CAS Google Scholar
  72. Basche, T., Moerner, W.E., Orrit, M. & Talon, H. Photon antibunching in the fluorescence of a single dye molecule trapped in a solid. Phys. Rev. Lett. 69, 1516–1519 (1992).
    Article CAS Google Scholar

Download references