Imaging single events at the cell membrane (original) (raw)
References
Neher, E. & Sakmann, B. Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature260, 799–802 (1976). ArticleCAS Google Scholar
Sakmann, B. & Neher, E. Patch clamp techniques for studying ionic channels in excitable membranes. Annu. Rev. Physiol.46, 455–472 (1984). ArticleCAS Google Scholar
Sakmann, B. Elementary steps in synaptic transmission revealed by currents through single ion channels. Science256, 503–512 (1992). ArticleCAS Google Scholar
Angleson, J.K. & Betz, W.J. Monitoring secretion in real time: capacitance, amperometry and fluorescence compared. Trends Neurosci.20, 281–287 (1997). ArticleCAS Google Scholar
Mosharov, E.V. & Sulzer, D. Analysis of exocytotic events recorded by amperometry. Nat. Methods2, 651–658 (2005). ArticleCAS Google Scholar
Ruta, V., Chen, J. & MacKinnon, R. Calibrated measurement of gating-charge arginine displacement in the KvAP voltage-dependent K+ channel. Cell123, 463–475 (2005). ArticleCAS Google Scholar
White, S.H., Ladokhin, A.S., Jayasinghe, S. & Hristova, K. How membranes shape protein structure. J. Biol. Chem.276, 32395–32398 (2001). ArticleCAS Google Scholar
Gandhavadi, M., Allende, D., Vidal, A., Simon, S.A. & McIntosh, T.J. Structure, composition, and peptide binding properties of detergent soluble bilayers and detergent resistant rafts. Biophys. J.82, 1469–1482 (2002). ArticleCAS Google Scholar
Sekar, R.B. & Periasamy, A. Fluorescence resonance energy transfer (FRET) microscopy imaging of live cell protein localizations. J. Cell Biol.160, 629–633 (2003). ArticleCAS Google Scholar
Rust, M., Bates, M. & Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods3, 793–795 (2006). ArticleCAS Google Scholar
Denk, W., Strickler, J.H. & Webb, W.W. Two-photon laser scanning fluorescence microscopy. Science248, 73–76 (1990). ArticleCAS Google Scholar
Takahashi, N., Kishimoto, T., Nemoto, T., Kadowaki, T. & Kasai, H. Fusion pore dynamics and insulin granule exocytosis in the pancreatic islet. Science297, 1349–1352 (2002). ArticleCAS Google Scholar
Webb, W.W. Applications of fluorescence correlation spectroscopy. Q. Rev. Biophys.9, 49–68 (1976). ArticleCAS Google Scholar
Fahey, P.F. et al. Lateral diffusion in planar lipid bilayers. Science195, 305–306 (1977). ArticleCAS Google Scholar
Schwille, P., Korlach, J. & Webb, W.W. Fluorescence correlation spectroscopy with single-molecule sensitivity on cell and model membranes. Cytometry36, 176–182 (1999). ArticleCAS Google Scholar
Axelrod, D. Total internal reflection fluorescence microscopy in cell biology. Traffic2, 764–774 (2001). ArticleCAS Google Scholar
Axelrod, D. Cell-substrate contacts illuminated by total internal reflection fluorescence. J. Cell Biol.89, 141–145 (1981). ArticleCAS Google Scholar
Axelrod, D., Burghardt, T.P. & Thompson, N.L. Total internal reflection fluorescence. Annu. Rev. Biophys. Bioeng.13, 247–268 (1984). ArticleCAS Google Scholar
Kawano, Y. et al. High-numerical-aperture objective lenses and optical system improved objective type total internal reflection fluorescence microscopy. Proc. SPIE4098, 142–151 (2000). ArticleCAS Google Scholar
Axelrod, D. Selective imaging of surface fluorescence with very high aperture microscope objectives. J. Biomed. Opt.6, 6–13 (2001). ArticleCAS Google Scholar
Schneckenburger, H. Total internal reflection fluorescence microscopy: technical innovations and novel applications. Curr. Opin. Biotechnol.16, 13–18 (2005). ArticleCAS Google Scholar
Kittel, R.J. et al. Bruchpilot promotes active zone assembly, Ca2+ channel clustering, and vesicle release. Science312, 1051–1054 (2006). ArticleCAS Google Scholar
Willig, K.I., Rizzoli, S.O., Westphal, V., Jahn, R. & Hell, S.W. STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature440, 935–939 (2006). ArticleCAS Google Scholar
Sieber, J.J., Willig, K.I., Heintzmann, R., Hell, S.W. & Lang, T. The SNARE motif is essential for the formation of syntaxin clusters in the plasma membrane. Biophys. J.90, 2843–2851 (2006). ArticleCAS Google Scholar
Shaner, N.C., Steinbach, P.A. & Tsien, R.Y. A guide to choosing fluorescent proteins. Nat. Methods2, 905–909 (2005). ArticleCAS Google Scholar
Giepmans, B.N., Adams, S.R., Ellisman, M.H. & Tsien, R.Y. The fluorescent toolbox for assessing protein location and function. Science312, 217–224 (2006). ArticleCAS Google Scholar
Tsien, R.Y. The green fluorescent protein. Annu. Rev. Biochem.67, 509–544 (1998). ArticleCAS Google Scholar
Griesbeck, O. Fluorescent proteins as sensors for cellular functions. Curr. Opin. Neurobiol.14, 636–641 (2004). ArticleCAS Google Scholar
Lippincott-Schwartz, J. & Smith, C.L. Insights into secretory and endocytic membrane traffic using green fluorescent protein chimeras. Curr. Opin. Neurobiol.7, 631–639 (1997). ArticleCAS Google Scholar
Lippincott-Schwartz, J., Altan-Bonnet, N. & Patterson, G.H. Photobleaching and photoactivation: following protein dynamics in living cells. Nat. Cell Biol. Suppl, S7–S14 (2003).
Chudakov, D.M. & Lukyanov, K.A. Use of green fluorescent protein (GFP) and its homologs for in vivo protein motility studies. Biochemistry (Mosc.)68, 952–957 (2003). ArticleCAS Google Scholar
Hofmann, M., Eggeling, C., Jakobs, S. & Hell, S.W. Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins. Proc. Natl. Acad. Sci. USA102, 17565–17569 (2005). ArticleCAS Google Scholar
Betzig, et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science313, 1642–1645 (2006). ArticleCAS Google Scholar
Jaiswal, J.K., Goldman, E.R., Mattoussi, H. & Simon, S.M. Use of quantum dots for live cell imaging. Nat. Methods1, 73–78 (2004). Article Google Scholar
Jaiswal, J.K. & Simon, S.M. Potentials and pitfalls of fluorescent quantum dots for biological imaging. Trends Cell Biol.14, 497–504 (2004). ArticleCAS Google Scholar
Gao, X. et al. In vivo molecular and cellular imaging with quantum dots. Curr. Opin. Biotechnol.16, 63–72 (2005). ArticleCAS Google Scholar
Michalet, X. et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science307, 538–544 (2005). ArticleCAS Google Scholar
Uyeda, H.T., Medintz, I.L., Jaiswal, J.K., Simon, S.M. & Mattoussi, H. Synthesis of compact multidentate ligands to prepare stable hydrophilic quantum dot fluorophores. J. Am. Chem. Soc.127, 3870–3878 (2005). ArticleCAS Google Scholar
An, S. & Zenisek, D. Regulation of exocytosis in neurons and neuroendocrine cells. Curr. Opin. Neurobiol.14, 522–530 (2004). ArticleCAS Google Scholar
Palfrey, H.C. & Artalejo, C.R. Secretion: kiss and run caught on film. Curr. Biol.13, R397–R399 (2003). ArticleCAS Google Scholar
Jaiswal, J.K., Chakrabarti, S., Andrews, N.W. & Simon, S.M. Synaptotagmin VII restricts fusion pore expansion during lysosomal exocytosis. PLoS Biol.2, E233 (2004). Article Google Scholar
Rink, J., Ghigo, E., Kalaidzidis, Y. & Zerial, M. Rab conversion as a mechanism of progression from early to late endosomes. Cell122, 735–749 (2005). ArticleCAS Google Scholar
Lampson, M.A., Schmoranzer, J., Zeigerer, A., Simon, S.M. & McGraw, T.E. Insulin-regulated release from the endosomal recycling compartment is regulated by budding of specialized vesicles. Mol. Biol. Cell12, 3489–3501 (2001). ArticleCAS Google Scholar
Oheim, M., Loerke, D., Stuhmer, W. & Chow, R.H. The last few milliseconds in the life of a secretory granule. Docking, dynamics and fusion visualized by total internal reflection fluorescence microscopy (TIRFM). Eur. Biophys. J.27, 83–98 (1998). ArticleCAS Google Scholar
Steyer, J.A., Horstmann, H. & Almers, W. Transport, docking and exocytosis of single secretory granules in live chromaffin cells. Nature388, 474–478 (1997). ArticleCAS Google Scholar
Kreitzer, G. et al. Three-dimensional analysis of post-Golgi carrier exocytosis in epithelial cells. Nat. Cell Biol.5, 126–136 (2003). ArticleCAS Google Scholar
Ma, L. et al. Direct imaging shows that insulin granule exocytosis occurs by complete vesicle fusion. Proc. Natl. Acad. Sci. USA101, 9266–9271 (2004). ArticleCAS Google Scholar
Ehrlich, M. et al. Endocytosis by random initiation and stabilization of clathrin-coated pits. Cell118, 591–605 (2004). ArticleCAS Google Scholar
Ohara-Imaizumi, M. et al. Monitoring of exocytosis and endocytosis of insulin secretory granules in the pancreatic beta-cell line MIN6 using pH-sensitive green fluorescent protein (pHluorin) and confocal laser microscopy. Biochem. J.363, 73–80 (2002). ArticleCAS Google Scholar
O'Connell, K.M. & Tamkun, M.M. Targeting of voltage-gated potassium channel isoforms to distinct cell surface microdomains. J. Cell Sci.118, 2155–2166 (2005). ArticleCAS Google Scholar
Massol, R.H., Larsen, J.E. & Kirchhausen, T. Possible role of deep tubular invaginations of the plasma membrane in MHC-I trafficking. Exp. Cell Res.306, 142–149 (2005). ArticleCAS Google Scholar
Lidke, D.S., Lidke, K.A., Rieger, B., Jovin, T.M. & Arndt-Jovin, D.J. Reaching out for signals: filopodia sense EGF and respond by directed retrograde transport of activated receptors. J. Cell Biol.170, 619–626 (2005). ArticleCAS Google Scholar
Warshaw, D.M. et al. Differential labeling of myosin V heads with quantum dots allows direct visualization of hand-over-hand processivity. Biophys. J.88, L30–L32 (2005). ArticleCAS Google Scholar
Dahan, M. et al. Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science302, 442–445 (2003). ArticleCAS Google Scholar
Courty, S., Luccardini, C., Bellaiche, Y., Cappello, G. & Dahan, M. Tracking individual kinesin motors in living cells using single quantum-dot imaging. Nano Lett.6, 1491–1495 (2006). ArticleCAS Google Scholar
Pramanik, A. & Rigler, R. Ligand-receptor interactions in the membrane of cultured cells monitored by fluorescence correlation spectroscopy. Biol. Chem.382, 371–378 (2001). ArticleCAS Google Scholar
Lieto, A.M., Cush, R.C. & Thompson, N.L. Ligand-receptor kinetics measured by total internal reflection with fluorescence correlation spectroscopy. Biophys. J.85, 3294–3302 (2003). ArticleCAS Google Scholar
Bacia, K., Scherfeld, D., Kahya, N. & Schwille, P. Fluorescence correlation spectroscopy relates rafts in model and native membranes. Biophys. J.87, 1034–1043 (2004). ArticleCAS Google Scholar
Ohsugi, Y., Saito, K., Tamura, M. & Kinjo, M. Lateral mobility of membrane-binding proteins in living cells measured by total internal reflection fluorescence correlation spectroscopy. Biophys. J.91, 3456–3464 (2006). ArticleCAS Google Scholar
Jaiswal, J.K., Andrews, N.W. & Simon, S.M. Membrane proximal lysosomes are the major vesicles responsible for calcium-dependent exocytosis in nonsecretory cells. J. Cell Biol.159, 625–635 (2002). ArticleCAS Google Scholar
Schmoranzer, J., Goulian, M., Axelrod, D. & Simon, S.M. Imaging constitutive exocytosis with total internal reflection fluorescence microscopy. J. Cell Biol.149, 23–32 (2000). ArticleCAS Google Scholar
Johns, L.M., Levitan, E.S., Shelden, E.A., Holz, R.W. & Axelrod, D. Restriction of secretory granule motion near the plasma membrane of chromaffin cells. J. Cell Biol.153, 177–190 (2001). ArticleCAS Google Scholar
Allersma, M.W., Bittner, M.A., Axelrod, D. & Holz, R.W. Motion matters: secretory granule motion adjacent to the plasma membrane and exocytosis. Mol. Biol. Cell17, 2424–2438 (2006). ArticleCAS Google Scholar
Rappoport, J.Z., Taha, B.W. & Simon, S.M. Movement of plasma-membrane-associated clathrin spots along the microtubule cytoskeleton. Traffic4, 460–467 (2003). ArticleCAS Google Scholar
Merrifield, C.J., Feldman, M.E., Wan, L. & Almers, W. Imaging actin and dynamin recruitment during invagination of single clathrin-coated pits. Nat. Cell Biol.4, 691–698 (2002). ArticleCAS Google Scholar
Merrifield, C.J., Perrais, D. & Zenisek, D. Coupling between clathrin-coated-pit invagination, cortactin recruitment, and membrane scission observed in live cells. Cell121, 593–606 (2005). ArticleCAS Google Scholar
Rappoport, J.Z., Benmerah, A. & Simon, S.M. Analysis of the AP-2 adaptor complex and cargo during clathrin-mediated endocytosis. Traffic6, 539–547 (2005). ArticleCAS Google Scholar
Habuchi, S. et al. Reversible single-molecule photoswitching in the GFP-like fluorescent protein Dronpa. Proc. Natl. Acad. Sci. USA102, 9511–9516 (2005). ArticleCAS Google Scholar
Sosa, H., Peterman, E.J., Moerner, W.E. & Goldstein, L.S. ADP-induced rocking of the kinesin motor domain revealed by single-molecule fluorescence polarization microscopy. Nat. Struct. Biol.8, 540–544 (2001). ArticleCAS Google Scholar
Basche, T., Moerner, W.E., Orrit, M. & Talon, H. Photon antibunching in the fluorescence of a single dye molecule trapped in a solid. Phys. Rev. Lett.69, 1516–1519 (1992). ArticleCAS Google Scholar