Trans-acting regulatory variation in Saccharomyces cerevisiae and the role of transcription factors (original) (raw)
Oleksiak, M.F., Churchill, G.A. & Crawford, D.L. Variation in gene expression within and among natural populations. Nat. Genet.32, 261–266 (2002). ArticleCAS Google Scholar
Brem, R.B., Yvert, G., Clinton, R. & Kruglyak, L. Genetic dissection of transcriptional regulation in budding yeast. Science296, 752–755 (2002). ArticleCAS Google Scholar
Cowles, C.R., Hirschhorn, J.N., Altshuler, D. & Lander, E.S. Detection of regulatory variation in mouse genes. Nat. Genet.32, 432–437 (2002). ArticleCAS Google Scholar
Yan, H., Yuan, W., Velculescu, V.E., Vogelstein, B. & Kinzler, K.W. Allelic variation in human gene expression. Science297, 1143 (2002). ArticleCAS Google Scholar
Rockman, M.V. & Wray, G.A. Abundant raw material for _cis_-regulatory evolution in humans. Mol. Biol. Evol.19, 1991–2004 (2002). ArticleCAS Google Scholar
Cheung, V.G. et al. Natural variation in human gene expression assessed in lymphoblastoid cells. Nat. Genet.33, 422–425 (2003). ArticleCAS Google Scholar
Schadt, E.E. et al. Genetics of gene expression surveyed in maize, mouse and man. Nature422, 297–302 (2003). ArticleCAS Google Scholar
Knight, J.C., Keating, B.J., Rockett, K.A. & Kwiatkowski, D.P. In vivo characterization of regulatory polymorphisms by allele-specific quantification of RNA polymerase loading. Nat. Genet.33, 469–475 (2003). ArticleCAS Google Scholar
Wu, L.F. et al. Large-scale prediction of Saccharomyces cerevisiae gene function using overlapping transcriptional clusters. Nat. Genet.31, 255–265 (2002). ArticleCAS Google Scholar
Eisen, M.B., Spellman, P.T., Brown, P.O. & Botstein, D. Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA95, 14863–14868 (1998). ArticleCAS Google Scholar
Gasch, A.P. et al. Genomic expression programs in the response of yeast cells to environmental changes. Mol. Biol. Cell11, 4241–4257 (2000). ArticleCAS Google Scholar
Hughes, T.R. et al. Functional discovery via a compendium of expression profiles. Cell102, 109–126 (2000). ArticleCAS Google Scholar
Spellman, P.T. et al. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell9, 3273–3297 (1998). ArticleCAS Google Scholar
Chu, S. et al. The transcriptional program of sporulation in budding yeast. Science282, 699–705 (1998). ArticleCAS Google Scholar
Jansen, R.C. & Nap, J.P. Genetical genomics: the added value from segregation. Trends Genet.17, 388–391 (2001). ArticleCAS Google Scholar
Jansen, R.C. Opinion: studying complex biological systems using multifactorial perturbation. Nat. Rev. Genet.4, 145–151 (2003). ArticleCAS Google Scholar
Winzeler, E.A. et al. Direct allelic variation scanning of the yeast genome. Science281, 1194–1197 (1998). ArticleCAS Google Scholar
Hirsch, J.P., Dietzel, C. & Kurjan, J. The carboxyl terminus of Scg1, the G alpha subunit involved in yeast mating, is implicated in interactions with the pheromone receptors. Genes Dev.5, 467–474 (1991). ArticleCAS Google Scholar
Brown, A.J. et al. Functional coupling of mammalian receptors to the yeast mating pathway using novel yeast/mammalian G protein α-subunit chimeras. Yeast16, 11–22 (2000). ArticleCAS Google Scholar
Kellis, M., Patterson, N., Endrizzi, M., Birren, B. & Lander, E.S. Sequencing and comparison of yeast species to identify genes and regulatory elements. Nature423, 241–254 (2003). ArticleCAS Google Scholar
Souciet, J. et al. Genomic exploration of the hemiascomycetous yeasts: 1. A set of yeast species for molecular evolution studies. FEBS Lett.487, 3–12 (2000). Article Google Scholar
Colman-Lerner, A., Chin, T.E. & Brent, R. Yeast Cbk1 and Mob2 activate daughter-specific genetic programs to induce asymmetric cell fates. Cell107, 739–750 (2001). ArticleCAS Google Scholar
Wang, Y., Shirogane, T., Liu, D., Harper, J.W. & Elledge, S.J. Exit from exit: resetting the cell cycle through Amn1 inhibition of G protein signaling. Cell112, 697–709 (2003). ArticleCAS Google Scholar
Giaever, G. et al. Functional profiling of the Saccharomyces cerevisiae genome. Nature418, 387–391 (2002). ArticleCAS Google Scholar
Lee, T.I. et al. Transcriptional regulatory networks in Saccharomyces cerevisiae. Science298, 799–804 (2002). ArticleCAS Google Scholar
Simon, I. et al. Serial regulation of transcriptional regulators in the yeast cell cycle. Cell106, 697–708 (2001). ArticleCAS Google Scholar
Jones, E.W., Pringle, J.R. & Broach, J.R. The molecular and cellular biology of the yeast Saccharomyces (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1992). Google Scholar
Forsburg, S.L. & Guarente, L. Identification and characterization of HAP4: a third component of the CCAAT-bound HAP2/HAP3 heteromer. Genes Dev.3, 1166–1178 (1989). ArticleCAS Google Scholar
Spector, M.S., Raff, A., DeSilva, H., Lee, K. & Osley, M.A. Hir1p and Hir2p function as transcriptional corepressors to regulate histone gene transcription in the Saccharomyces cerevisiae cell cycle. Mol. Cell. Biol.17, 545–552 (1997). ArticleCAS Google Scholar
Guelzim, N., Bottani, S., Bourgine, P. & Kepes, F. Topological and causal structure of the yeast transcriptional regulatory network. Nat. Genet.31, 60–63 (2002). ArticleCAS Google Scholar
Ashburner, M. et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet.25, 25–29 (2000). ArticleCAS Google Scholar
Olson, M.V. When less is more: gene loss as an engine of evolutionary change. Am. J. Hum. Genet.64, 18–23 (1999). ArticleCAS Google Scholar
Rifkin, S.A., Kim, J. & White, K.P. Evolution of gene expression in the Drosophila melanogaster subgroup. Nat. Genet.33, 138–144 (2003). ArticleCAS Google Scholar
Brachmann, C.B. et al. Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast14, 115–132 (1998). ArticleCAS Google Scholar
Mortimer, R.K., Romano, P., Suzzi, G. & Polsinelli, M. Genome renewal: a new phenomenon revealed from a genetic study of 43 strains of Saccharomyces cerevisiae derived from natural fermentation of grape musts. Yeast10, 1543–1552 (1994). ArticleCAS Google Scholar
Goldstein, A.L. & McCusker, J.H. Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Yeast15, 1541–1553 (1999). ArticleCAS Google Scholar
Gietz, R.D. & Woods, R.A. Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol.350, 87–96 (2002). ArticleCAS Google Scholar
Baudin, A., Ozier-Kalogeropoulos, O., Denouel, A., Lacroute, F. & Cullin, C. A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae. Nucleic Acids Res.21, 3329–3330 (1993). ArticleCAS Google Scholar
Lorenz, M.C. et al. Gene disruption with PCR products in Saccharomyces cerevisiae. Gene158, 113–117 (1995). ArticleCAS Google Scholar
Foss, E.J. Tof1p regulates DNA damage responses during S phase in Saccharomyces cerevisiae. Genetics157, 567–577 (2001). CASPubMedPubMed Central Google Scholar