Loss of collagenase-2 confers increased skin tumor susceptibility to male mice (original) (raw)

References

  1. Egeblad, M. & Werb, Z. New functions for the matrix metalloproteinases in cancer progression. Nat. Rev. Cancer 2, 163–175 (2002).
    Article Google Scholar
  2. Overall, C.M. & López-Otín, C. Strategies for MMP inhibition in cancer: innovations for the post-trial era. Nat. Rev. Cancer 2, 657–672 (2002).
    Article CAS Google Scholar
  3. Coussens, L.M., Fingleton, B. & Matrisian, L.M. Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 295, 2387–2392 (2002).
    Article CAS Google Scholar
  4. Moilanen, M., Pirila, E., Grenman, R., Sorsa, T. & Salo, T. Expression and regulation of collagenase-2 (MMP8) in head and neck squamous cell carcinomas. J. Pathol. 197, 72–81 (2002).
    Article CAS Google Scholar
  5. Brinckerhoff, C.E. & Matrisian, L.M. Matrix metalloproteinases: a tail of a frog that became a prince. Nat. Rev. Mol. Cell Biol. 3, 207–214 (2002).
    Article CAS Google Scholar
  6. Coussens, L.M. & Werb, Z. Inflammation and cancer. Nature 420, 860–867 (2002).
    Article CAS Google Scholar
  7. Devarajan, P., Mookhtiar, K., Van Wart, H. & Berliner, N. Structure and expression of the cDNA encoding human neutrophil collagenase. Blood 77, 2731–2738 (1991).
    CAS PubMed Google Scholar
  8. Balbín, M. et al. Collagenase 2 (MMP8) expression in murine tissue-remodeling processes: analysis of its potential role in postpartum involution of the uterus. J. Biol. Chem. 273, 23959–23968 (1998).
    Article Google Scholar
  9. Herman, M.P. et al. Expression of neutrophil collagenase (matrix metalloproteinase-8) in human atheroma: a novel collagenolytic pathway suggested by transcriptional profiling. Circulation 104, 1899–1904 (2001).
    Article CAS Google Scholar
  10. Kiili, M. et al. Collagenase-2 (MMP8) and collagenase-3 (MMP-13) in adult periodontitis: molecular forms and levels in gingival crevicular fluid and immunolocalization in gingival tissue. J. Clin. Periodontol. 29, 224–232 (2002).
    Article CAS Google Scholar
  11. Pirila, E. et al. Gelatinase A (MMP-2), collagenase-2 (MMP8), and laminin-γ2-chain expression in murine inflammatory bowel disease (ulcerative colitis). Dig. Dis. Sci. 48, 93–98 (2003).
    Article Google Scholar
  12. Quintanilla, M., Brown, K., Ramsden, M. & Balmain, A. Carcinogen-specific mutation and amplification of Ha-ras during mouse skin carcinogenesis. Nature 322, 78–80 (1986).
    Article CAS Google Scholar
  13. Qin, Z., Kim, H.J., Hemme, J. & Blankenstein, T. Inhibition of methylcholanthrene-induced carcinogenesis by an interferon γ receptor-dependent foreign body reaction. J. Exp. Med. 195, 1479–1490 (2002).
    Article CAS Google Scholar
  14. Coussens, L.M., Shapiro, S.D., Soloway, P.D. & Werb, Z. Models for gain-of-function and loss-of-function of MMPs. Transgenic and gene targeted mice. Methods Mol. Biol. 151, 149–179 (2001).
    CAS PubMed Google Scholar
  15. Coussens, L.M., Tinkle, C.L., Hanahan, D. & Werb, Z. MMP9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell 103, 481–490 (2000).
    Article CAS Google Scholar
  16. Knauper, V., López-Otín, C., Smith, B., Knight, G. & Murphy, G. Biochemical characterization of human collagenase-3. J. Biol. Chem. 271, 1544–1550 (1996).
    Article CAS Google Scholar
  17. Rovai, L.E., Herschman, H.R. & Smith, J.B. The murine neutrophil-chemoattractant chemokines LIX, KC, and MIP-2 have distinct induction kinetics, tissue distributions, and tissue-specific sensitivities to glucocorticoid regulation in endotoxemia. J. Leukoc. Biol. 64, 494–502 (1998).
    Article CAS Google Scholar
  18. Rossi, D. & Zlotnik, A. The biology of chemokines and their receptors. Annu. Rev. Immunol. 18, 217–242 (2000).
    Article CAS Google Scholar
  19. McQuibban, G.A. et al. Inflammation dampened by gelatinase A cleavage of monocyte chemoattractant protein-3. Science 289, 1202–1206 (2000).
    Article CAS Google Scholar
  20. McQuibban, G.A. et al. Matrix metalloproteinase activity inactivates the CXC chemokine stromal cell-derived factor-1. J. Biol. Chem. 276, 43503–43508 (2001).
    Article CAS Google Scholar
  21. Wuyts, A. et al. NH2- and COOH-terminal truncations of murine granulocyte chemotactic protein-2 augment the in vitro and in vivo neutrophil chemotactic potency. J. Immunol. 163, 6155–6163 (1999).
    CAS PubMed Google Scholar
  22. Wuyts, A. et al. Isolation of the CXC chemokines ENA-78, GROα and GROγ from tumor cells and leukocytes reveals NH2-terminal heterogeneity. Eur. J. Biochem. 260, 421–429 (1999).
    Article CAS Google Scholar
  23. López-Otín, C. & Overall, C.M. Protease degradomics: a new challenge for proteomics. Nat. Rev. Mol. Cell Biol. 3, 509–519 (2002).
    Article Google Scholar
  24. Puente, X.S., Sánchez, L.M., Overall, C.M., & López-Otín, C. Human and mouse proteases: a comparative genomic approach. Nat. Rev. Genet. 4, 544–558 (2003).
    Article CAS Google Scholar
  25. Ridger, V.C., Wagner, B.E., Wallace, W.A. & Hellewell P.G. Differential effects of CD18, CD29, and CD49 integrin subunit inhibition on neutrophil migration in pulmonary inflammation. J. Immunol. 166, 3484–3490 (2001).
    Article CAS Google Scholar

Download references