Wechsler, J. et al. Acquired mutations in GATA1 in the megakaryoblastic leukemia of Down syndrome. Nat. Genet.32, 148–152 (2002). ArticleCASPubMed Google Scholar
Hitzler, J.K., Cheung, J., Li, Y., Scherer, S.W. & Zipursky, A. GATA1 mutations in transient leukemia and acute megakaryoblastic leukemia of Down syndrome. Blood101, 4301–4304 (2003). ArticleCASPubMed Google Scholar
Rainis, L. et al. Mutations in exon 2 of GATA1 are early events in megakaryocytic malignancies associated with trisomy 21. Blood102, 981–986 (2003). ArticleCASPubMed Google Scholar
Mundschau, G. et al. Mutagenesis of GATA1 is an initiating event in Down syndrome leukemogenesis. Blood101, 4298–4300 (2003). ArticleCASPubMed Google Scholar
Xu, G. et al. Frequent mutations in the GATA-1 gene in the transient myeloproliferative disorder of Down's syndrome. Blood102, 2960–2968 (2003). ArticleCASPubMed Google Scholar
Ahmed, M. et al. Natural history of GATA1 mutations in Down syndrome. Blood103, 2480–2489 (2004). ArticleCASPubMed Google Scholar
Gurbuxani, S., Vyas, P. & Crispino, J.D. Recent insights into the mechanisms of myeloid leukemogenesis in Down syndrome. Blood103, 399–406 (2004). ArticleCASPubMed Google Scholar
Blobel, G.A., Simon, M.C. & Orkin, S.H. Rescue of GATA-1-deficient embryonic stem cells by heterologous GATA-binding proteins. Mol. Cell. Biol.15, 626–633 (1995). ArticleCASPubMedPubMed Central Google Scholar
Visvader, J.E., Crossley, M., Hill, J., Orkin, S.H. & Adams, J.M. The C-terminal zinc finger of GATA-1 or GATA-2 is sufficient to induce megakaryocytic differentiation of an early myeloid cell line. Mol. Cell. Biol.15, 634–641 (1995). ArticleCASPubMedPubMed Central Google Scholar
Weiss, M.J., Yu, C. & Orkin, S.H. Erythroid-cell-specific properties of transcription factor GATA-1 revealed by phenotypic rescue of a gene-targeted cell line. Mol. Cell. Biol.17, 1642–1651 (1997). ArticleCASPubMedPubMed Central Google Scholar
Shimizu, R., Takahashi, S., Ohneda, K., Engel, J.D. & Yamamoto, M. In vivo requirements for GATA-1 functional domains during primitive and definitive erythropoiesis. EMBO J.20, 5250–5260 (2001). ArticleCASPubMedPubMed Central Google Scholar
Kuhn, R., Schwenk, F., Aguet, M. & Rajewsky, K. Inducible gene targeting in mice. Science269, 1427–1429 (1995). ArticleCASPubMed Google Scholar
Shivdasani, R.A., Fujiwara, Y., McDevitt, M.A. & Orkin, S.H. A lineage-selective knockout establishes the critical role of transcription factor GATA-1 in megakaryocyte growth and platelet development. EMBO J.16, 3965–3973 (1997). ArticleCASPubMedPubMed Central Google Scholar
Vyas, P., Ault, K., Jackson, C.W., Orkin, S.H. & Shivdasani, R.A. Consequences of GATA-1 deficiency in megakaryocytes and platelets. Blood93, 2867–2875 (1999). CASPubMed Google Scholar
Welch, J.J. et al. Global regulation of erythroid gene expression by transcription factor GATA-1. Blood104, 3136–3147 (2004). ArticleCASPubMed Google Scholar
Weiss, M.J., Keller, G. & Orkin, S.H. Novel insights into erythroid development revealed through in vitro differentiation of GATA-1 embryonic stem cells. Genes Dev.8, 1184–1197 (1994). ArticleCASPubMed Google Scholar
Tsai, F.Y. et al. An early haematopoietic defect in mice lacking the transcription factor GATA-2. Nature371, 221–226 (1994). ArticleCASPubMed Google Scholar
Scott, E.W., Simon, M.C., Anastasi, J. & Singh, H. Requirement of transcription factor PU.1 in the development of multiple hematopoietic lineages. Science265, 1573–1577 (1994). ArticleCASPubMed Google Scholar
Georgopoulos, K. et al. The Ikaros gene is required for the development of all lymphoid lineages. Cell79, 143–156 (1994). ArticleCASPubMed Google Scholar
Martin, D.I. & Orkin, S.H. Transcriptional activation and DNA binding by the erythroid factor GF-1/NF-E1/Eryf 1. Genes Dev.4, 1886–1898 (1990). ArticleCASPubMed Google Scholar
Hitzler, J.K. & Zipursky, A. Origins of leukaemia in children with Down syndrome. Nat. Rev. Cancer5, 11–20 (2005). ArticleCASPubMed Google Scholar
McDevitt, M.A., Fujiwara, Y., Shivdasani, R.A. & Orkin, S.H. An upstream, DNase I hypersensitive region of the hematopoietic-expressed transcription factor GATA-1 gene confers developmental specificity in transgenic mice. Proc. Natl. Acad. Sci. USA94, 7976–7981 (1997). ArticleCASPubMedPubMed Central Google Scholar
Crispino, J.D., Lodish, M.B., MacKay, J.P. & Orkin, S.H. Use of altered specificity mutants to probe a specific protein-protein interaction in differentiation: the GATA-1:FOG complex. Mol. Cell3, 219–228 (1999). ArticleCASPubMed Google Scholar
Crispino, J.D. GATA1 mutations in Down syndrome: implications for biology and diagnosis of children with transient myeloproliferative disorder and acute megakaryoblastic leukemia. Pediatr. Blood Cancer44, 40–44 (2004). Article Google Scholar
Gagneten, S., Le, Y., Miller, J. & Sauer, B. Brief expression of a GFP cre fusion gene in embryonic stem cells allows rapid retrieval of site-specific genomic deletions. Nucleic Acids Res.25, 3326–3331 (1997). ArticleCASPubMedPubMed Central Google Scholar
Keller, G., Kennedy, M., Papayannopoulou, T. & Wiles, M.V. Hematopoietic commitment during embryonic stem cell differentiation in culture. Mol. Cell. Biol.13, 473–486 (1993). ArticleCASPubMedPubMed Central Google Scholar
Li, C. & Wong, W.H. Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proc. Natl. Acad. Sci. USA98, 31–36 (2001). ArticleCASPubMed Google Scholar
Vyas, P., Norris, F.A., Joseph, R., Majerus, P.W. & Orkin, S.H. Inositol polyphosphate 4-phosphatase type I regulates cell growth downstream of transcription factor GATA-1. Proc. Natl. Acad. Sci. USA97, 13696–13701 (2000). ArticleCASPubMedPubMed Central Google Scholar