Gardiner-Garden, M. & Frommer, M. CpG islands in vertebrate genomes. J. Mol. Biol.196, 261–282 (1987). ArticleCAS Google Scholar
Lander, E.S. et al. Initial sequencing and analysis of the human genome. Nature409, 860–921 (2001). ArticleCAS Google Scholar
Clark, S.J. & Melki, J. DNA methylation and gene silencing in cancer: which is the guilty party? Oncogene21, 5380–5387 (2002). ArticleCAS Google Scholar
Song, J.Z., Stirzaker, C., Harrison, J., Melki, J.R. & Clark, S.J. Hypermethylation trigger of the glutathione-S-transferase gene (GSTP1) in prostate cancer cells. Oncogene21, 1048–1061 (2002). ArticleCAS Google Scholar
Baylin, S. & Bestor, T.H. Altered methylation patterns in cancer cell genomes: cause or consequence? Cancer Cell1, 299–305 (2002). ArticleCAS Google Scholar
Bachman, K.E. et al. Histone modifications and silencing prior to DNA methylation of a tumor suppressor gene. Cancer Cell3, 89–95 (2003). ArticleCAS Google Scholar
Melki, J.R., Vincent, P.C. & Clark, S.J. Concurrent DNA hypermethylation of multiple genes in acute myeloid leukaemia. Cancer Res.59, 3730–3740 (1999). CASPubMed Google Scholar
Costello, J.F. et al. Aberrant CpG-island methylation has non-random and tumour-type-specific patterns. Nat. Genet.24, 132–138 (2000). ArticleCAS Google Scholar
Rush, L.J. et al. Epigenetic profiling in chronic lymphocytic leukemia reveals novel methylation targets. Cancer Res.64, 2424–2433 (2004). ArticleCAS Google Scholar
Feltus, F.A., Lee, E.K., Costello, J.F., Plass, C. & Vertino, P.M. Predicting aberrant CpG island methylation. Proc. Natl. Acad. Sci. USA100, 12253–12258 (2003). ArticleCAS Google Scholar
Ushijima, T. Detection and interpretation of altered methylation patterns in cancer cells. Nat. Rev. Cancer5, 223–231 (2005). ArticleCAS Google Scholar
Frigola, J., Ribas, M., Risques, R.A. & Peinado, M.A. Methylome profiling of cancer cells by amplification of inter-methylated sites (AIMS). Nucleic Acids Res.30, e28 (2002). Article Google Scholar
Stirzaker, C., Song, J.Z., Davidson, B. & Clark, S.J. Transcriptional gene silencing promotes DNA hypermethylation through a sequential change in chromatin modifications in cancer cells. Cancer Res.64, 3871–3877 (2004). ArticleCAS Google Scholar
Kondo, Y., Shen, L., Yan, P.S., Huang, T.H. & Issa, J.P. Chromatin immunoprecipitation microarrays for identification of genes silenced by histone H3 lysine 9 methylation. Proc. Natl. Acad. Sci. USA101, 7398–7403 (2004). ArticleCAS Google Scholar
Frigola, J. et al. Differential DNA hypermethylation and hypomethylation signatures in colorectal cancer. Hum. Mol. Genet.14, 319–326 (2005). ArticleCAS Google Scholar
Kangas, M. et al. Structure and chromosomal localization of the human and murine genes for the macrophage MARCO receptor. Genomics58, 82–89 (1999). ArticleCAS Google Scholar
Gui, C.Y., Ngo, L., Xu, W.S., Richon, V.M. & Marks, P.A. Histone deacetylase (HDAC) inhibitor activation of p21WAF1 involves changes in promoter-associated proteins, including HDAC1. Proc. Natl. Acad. Sci. USA101, 1241–1246 (2004). ArticleCAS Google Scholar
Archer, S.Y., Meng, S., Shei, A. & Hodin, R.A. p21(WAF1) is required for butyrate-mediated growth inhibition of human colon cancer cells. Proc. Natl. Acad. Sci. USA95, 6791–6796 (1998). ArticleCAS Google Scholar
Zhu, W.G. et al. 5-aza-2′-deoxycytidine activates the p53/p21Waf1/Cip1 pathway to inhibit cell proliferation. J. Biol. Chem.279, 15161–15166 (2004). ArticleCAS Google Scholar
Huschtscha, L.I. et al. Loss of p16INK4 expression by methylation is associated with lifespan extension of human mammary epithelial cells. Cancer Res.58, 3508–3512 (1998). CASPubMed Google Scholar
Weber, M. et al. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat. Genet.37, 853–862 (2005). ArticleCAS Google Scholar
Nie, Y. et al. DNA hypermethylation is a mechanism for loss of expression of the HLA class I genes in human esophageal squamous cell carcinomas. Carcinogenesis22, 1615–1623 (2001). ArticleCAS Google Scholar
van Noesel, M.M. et al. Clustering of hypermethylated genes in neuroblastoma. Genes Chromosom. Cancer38, 226–233 (2003). ArticleCAS Google Scholar
Palmisano, W.A. et al. Aberrant promoter methylation of the transcription factor genes PAX5 alpha and beta in human cancers. Cancer Res.63, 4620–4625 (2003). CASPubMed Google Scholar
Brockdorff, N. X-chromosome inactivation: closing in on proteins that bind Xist RNA. Trends Genet.18, 352–358 (2002). ArticleCAS Google Scholar
Latham, K.E. X chromosome imprinting and inactivation in preimplantation mammalian embryos. Trends Genet.21, 120–127 (2005). ArticleCAS Google Scholar
Plath, K., Mlynarczyk-Evans, S., Nusinow, D.A. & Panning, B. Xist RNA and the mechanism of X chromosome inactivation. Annu. Rev. Genet.36, 233–278 (2002). ArticleCAS Google Scholar
Lippman, Z. & Martienssen, R. The role of RNA interference in heterochromatic silencing. Nature431, 364–370 (2004). ArticleCAS Google Scholar
O'Neill, M.J. The influence of non-coding RNAs on allele-specific gene expression in mammals. Hum. Mol. Genet.14, R113–R120 (2005). ArticleCAS Google Scholar
Jaffrey, R.G. et al. Genomic instability at the BUB1 locus in colorectal cancer, but not in non-small cell lung cancer. Cancer Res.60, 4349–4352 (2000). CASPubMed Google Scholar
Moon, R.T., Kohn, A.D., De Ferrari, G.V. & Kaykas, A. WNT and beta-catenin signalling: diseases and therapies. Nat. Rev. Genet.5, 691–701 (2004). ArticleCAS Google Scholar
Adamska, M., MacDonald, B.T., Sarmast, Z.H., Oliver, E.R. & Meisler, M.H. En1 and Wnt7a interact with Dkk1 during limb development in the mouse. Dev. Biol.272, 134–144 (2004). ArticleCAS Google Scholar
Pang, R.T., Lee, L.T., Ng, S.S., Yung, W.H. & Chow, B.K. CpG methylation and transcription factors Sp1 and Sp3 regulate the expression of the human secretin receptor gene. Mol. Endocrinol.18, 471–483 (2004). ArticleCAS Google Scholar
Tang, C. et al. Expression of receptors for gut peptides in pancreata of BOP-treated and control hamsters. Carcinogenesis17, 2171–2175 (1996). ArticleCAS Google Scholar
Tang, C., Biemond, I. & Lamers, C.B. Expression of peptide receptors in human endocrine tumours of the pancreas. Gut40, 267–271 (1997). ArticleCAS Google Scholar
Reis, F.M. et al. Activin, inhibin and the human breast. Mol. Cell. Endocrinol.225, 77–82 (2004). ArticleCAS Google Scholar
Mylonas, I. et al. Inhibin/activin subunits (inhibin-alpha, -betaA and -betaB) are differentially expressed in human breast cancer and their metastasis. Oncol. Rep.13, 81–88 (2005). CASPubMed Google Scholar
Sims, R.J., III, Nishioka, K. & Reinberg, D. Histone lysine methylation: a signature for chromatin function. Trends Genet.19, 629–639 (2003). ArticleCAS Google Scholar
Mutskov, V. & Felsenfeld, G. Silencing of transgene transcription precedes methylation of promoter DNA and histone H3 lysine 9. EMBO J.23, 138–149 (2004). ArticleCAS Google Scholar
Gius, D. et al. Distinct effects on gene expression of chemical and genetic manipulation of the cancer epigenome revealed by a multimodality approach. Cancer Cell6, 361–371 (2004). ArticleCAS Google Scholar
Bird, A. DNA methylation patterns and epigenetic memory. Genes Dev.16, 6–21 (2002). ArticleCAS Google Scholar
Lorincz, M.C., Schubeler, D., Hutchinson, S.R., Dickerson, D.R. & Groudine, M. DNA methylation density influences the stability of an epigenetic imprint and Dnmt3a/b-independent de novo methylation. Mol. Cell. Biol.22, 7572–7580 (2002). ArticleCAS Google Scholar
Nguyen, C. et al. Susceptibility of nonpromoter CpG islands to de novo methylation in normal and neoplastic cells. J. Natl. Cancer Inst.93, 1465–1472 (2001). ArticleCAS Google Scholar
Lorincz, M.C., Dickerson, D.R., Schmitt, M. & Groudine, M. Intragenic DNA methylation alters chromatin structure and elongation efficiency in mammalian cells. Nat. Struct. Mol. Biol.11, 1068–1075 (2004). ArticleCAS Google Scholar
Clark, S.J., Harrison, J., Paul, C.L. & Frommer, M. High sensitivity mapping of methylated cytosines. Nucleic Acids Res.22, 2990–2997 (1994). ArticleCAS Google Scholar