The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome (original) (raw)

References

  1. McDonald, L.C. et al. An epidemic, toxin gene-variant strain of Clostridium difficile . N. Engl. J. Med. 353, 2433–2441 (2005).
    Article CAS PubMed Google Scholar
  2. Loo, V.G. et al. A predominantly clonal multi-institutional outbreak of _Clostridium difficile_-associated diarrhea with high morbidity and mortality. N. Engl. J. Med. 353, 2442–2449 (2005).
    Article CAS PubMed Google Scholar
  3. Voth, D.E. & Ballard, J.D. Clostridium difficile toxins: mechanism of action and role in disease. Clin. Microbiol. Rev. 18, 247–263 (2005).
    Article CAS PubMed PubMed Central Google Scholar
  4. Wust, J., Sullivan, N.M., Hardegger, U. & Wilkins, T.D. Investigation of an outbreak of antibiotic-associated colitis by various typing methods. J. Clin. Microbiol. 16, 1096–1101 (1982).
    CAS PubMed PubMed Central Google Scholar
  5. Nolling, J. et al. Genome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum . J. Bacteriol. 183, 4823–4838 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  6. Shimizu, T. et al. Complete genome sequence of Clostridium perfringens, an anaerobic flesh-eater. Proc. Natl. Acad. Sci. USA 99, 996–1001 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  7. Bruggemann, H. et al. The genome sequence of Clostridium tetani, the causative agent of tetanus disease. Proc. Natl. Acad. Sci. USA 100, 1316–1321 (2003).
    Article CAS PubMed PubMed Central Google Scholar
  8. Farrow, K.A., Lyras, D. & Rood, J.I. Genomic analysis of the erythromycin resistance element Tn_5398_ from Clostridium difficile . Microbiology 147, 2717–2728 (2001).
    Article CAS PubMed Google Scholar
  9. Haraldsen, J.D. & Sonenshein, A.L. Efficient sporulation in Clostridium difficile requires disruption of the sigmaK gene. Mol. Microbiol. 48, 811–821 (2003).
    Article CAS PubMed Google Scholar
  10. Braun, V. et al. A chimeric ribozyme in Clostridium difficile combines features of group I introns and insertion elements. Mol. Microbiol. 36, 1447–1459 (2000).
    Article CAS PubMed Google Scholar
  11. Burrus, V., Pavlovic, G., Decaris, B. & Guedon, G. Conjugative transposons: the tip of the iceberg. Mol. Microbiol. 46, 601–610 (2002).
    Article CAS PubMed Google Scholar
  12. Mullany, P. et al. Genetic analysis of a tetracycline resistance element from Clostridium difficile and its conjugal transfer to and from Bacillus subtilis . J. Gen. Microbiol. 136, 1343–1349 (1990).
    Article CAS PubMed Google Scholar
  13. Wang, H. et al. Characterization of the ends and target sites of the novel conjugative transposon Tn_5397_ from Clostridium difficile: excision and circularization is mediated by the large resolvase, TndX. J. Bacteriol. 182, 3775–3783 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  14. Franke, A.E. & Clewell, D.B. Evidence for a chromosome-borne resistance transposon (Tn_916_) in Streptococcus faecalis that is capable of “conjugal” transfer in the absence of a conjugative plasmid. J. Bacteriol. 145, 494–502 (1981).
    CAS PubMed PubMed Central Google Scholar
  15. Roberts, A.P., Johanesen, P.A., Lyras, D., Mullany, P. & Rood, J.I. Comparison of Tn_5397_ from Clostridium difficile, Tn_916_ from Enterococcus faecalis and the CW459tet(M) element from Clostridium perfringens shows that they have similar conjugation regions but different insertion and excision modules. Microbiology 147, 1243–1251 (2001).
    Article CAS PubMed Google Scholar
  16. Garnier, F., Taourit, S., Glaser, P., Courvalin, P. & Galimand, M. Characterization of transposon Tn_1549_, conferring VanB-type resistance in Enterococcus spp. Microbiology 146, 1481–1489 (2000).
    Article CAS PubMed Google Scholar
  17. Jansen, R., Embden, J.D., Gaastra, W. & Schouls, L.M. Identification of genes that are associated with DNA repeats in prokaryotes. Mol. Microbiol. 43, 1565–1575 (2002).
    Article CAS PubMed Google Scholar
  18. Mojica, F.J., Diez-Villasenor, C., Garcia-Martinez, J. & Soria, E. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J. Mol. Evol. 60, 174–182 (2005).
    Article CAS PubMed Google Scholar
  19. Makarova, K.S., Grishin, N.V., Shabalina, S.A., Wolf, Y.I. & Koonin, E.V. A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol. Direct 1, 7 (2006).
    Article PubMed PubMed Central Google Scholar
  20. Calabi, E. et al. Molecular characterization of the surface layer proteins from Clostridium difficile . Mol. Microbiol. 40, 1187–1199 (2001).
    Article CAS PubMed Google Scholar
  21. Wright, A. et al. Proteomic analysis of cell surface proteins from Clostridium difficile . Proteomics 5, 2443–2452 (2005).
    Article CAS PubMed Google Scholar
  22. Waligora, A.J. et al. Characterization of a cell surface protein of Clostridium difficile with adhesive properties. Infect. Immun. 69, 2144–2153 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  23. Savariau-Lacomme, M.P., Lebarbier, C., Karjalainen, T., Collignon, A. & Janoir, C. Transcription and analysis of polymorphism in a cluster of genes encoding surface-associated proteins of Clostridium difficile . J. Bacteriol. 185, 4461–4470 (2003).
    Article CAS PubMed PubMed Central Google Scholar
  24. Hennequin, C., Janoir, C., Barc, M.C., Collignon, A. & Karjalainen, T. Identification and characterization of a fibronectin-binding protein from Clostridium difficile . Microbiology 149, 2779–2787 (2003).
    Article CAS PubMed Google Scholar
  25. Poilane, I., Karjalainen, T., Barc, M.C., Bourlioux, P. & Collignon, A. Protease activity of Clostridium difficile strains. Can. J. Microbiol. 44, 157–161 (1998).
    Article CAS PubMed Google Scholar
  26. Dramsi, S., Trieu-Cuot, P. & Bierne, H. Sorting sortases: a nomenclature proposal for the various sortases of Gram-positive bacteria. Res. Microbiol. 156, 289–297 (2005).
    Article CAS PubMed Google Scholar
  27. Mazmanian, S.K., Ton-That, H., Su, K. & Schneewind, O. An iron-regulated sortase anchors a class of surface protein during Staphylococcus aureus pathogenesis. Proc. Natl. Acad. Sci. USA 99, 2293–2298 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  28. Borriello, S.P., Welch, A.R., Barclay, F.E. & Davies, H.A. Mucosal association by Clostridium difficile in the hamster gastrointestinal tract. J. Med. Microbiol. 25, 191–196 (1988).
    Article CAS PubMed Google Scholar
  29. Davies, H.A. & Borriello, S.P. Detection of capsule in strains of Clostridium difficile of varying virulence and toxigenicity. Microb. Pathog. 9, 141–146 (1990).
    Article CAS PubMed Google Scholar
  30. Depardieu, F., Bonora, M.G., Reynolds, P.E. & Courvalin, P. The vanG glycopeptide resistance operon from Enterococcus faecalis revisited. Mol. Microbiol. 50, 931–948 (2003).
    Article CAS PubMed Google Scholar
  31. Arthur, M., Depardieu, F., Molinas, C., Reynolds, P. & Courvalin, P. The vanZ gene of Tn_1546_ from Enterococcus faecium BM4147 confers resistance to teicoplanin. Gene 154, 87–92 (1995).
    Article CAS PubMed Google Scholar
  32. Champion, O.L. et al. Comparative phylogenomics of the food-borne pathogen Campylobacter jejuni reveals genetic markers predictive of infection source. Proc. Natl. Acad. Sci. USA 102, 16043–16048 (2005).
    Article CAS PubMed PubMed Central Google Scholar
  33. Selmer, T. & Andrei, P.I. p-Hydroxyphenylacetate decarboxylase from Clostridium difficile. A novel glycyl radical enzyme catalysing the formation of p-cresol. Eur. J. Biochem. 268, 1363–1372 (2001).
    Article CAS PubMed Google Scholar
  34. Elsden, S.R., Hilton, M.G. & Waller, J.M. The end products of the metabolism of aromatic amino acids by clostridia. Arch. Microbiol. 107, 283–288 (1976).
    Article CAS PubMed Google Scholar
  35. Begley, M., Gahan, C.G. & Hill, C. The interaction between bacteria and bile. FEMS Microbiol. Rev. 29, 625–651 (2005).
    Article CAS PubMed Google Scholar
  36. Sleator, R.D., Wemekamp-Kamphuis, H.H., Gahan, C.G., Abee, T. & Hill, C.A. PrfA-regulated bile exclusion system (BilE) is a novel virulence factor in Listeria monocytogenes . Mol. Microbiol. 55, 1183–1195 (2005).
    Article CAS PubMed Google Scholar
  37. Paredes, C.J., Alsaker, K.V. & Papoutsakis, E.T. A comparative genomic view of clostridial sporulation and physiology. Nat. Rev. Microbiol. 3, 969–978 (2005).
    Article CAS PubMed Google Scholar
  38. Moir, A., Corfe, B.M. & Behravan, J. Spore germination. Cell. Mol. Life Sci. 59, 403–409 (2002).
    Article CAS PubMed Google Scholar
  39. Broussolle, V. et al. Molecular and physiological characterisation of spore germination in Clostridium botulinum and C. sporogenes . Anaerobe 8, 89–100 (2002).
    Article CAS Google Scholar
  40. Carter, G.P., Purdy, D., Williams, P. & Minton, N.P. Quorum sensing in Clostridium difficile: analysis of a luxS-type signalling system. J. Med. Microbiol. 54, 119–127 (2005).
    Article CAS PubMed Google Scholar
  41. Whitehead, N.A., Barnard, A.M., Slater, H., Simpson, N.J. & Salmond, G.P. Quorum-sensing in Gram-negative bacteria. FEMS Microbiol. Rev. 25, 365–404 (2001).
    Article CAS PubMed Google Scholar
  42. Lee, A.S. & Song, K.P. LuxS/autoinducer-2 quorum sensing molecule regulates transcriptional virulence gene expression in Clostridium difficile . Biochem. Biophys. Res. Commun. 335, 659–666 (2005).
    Article CAS PubMed Google Scholar
  43. Ohtani, K., Hayashi, H. & Shimizu, T. The luxS gene is involved in cell-cell signalling for toxin production in Clostridium perfringens . Mol. Microbiol. 44, 171–179 (2002).
    Article CAS PubMed Google Scholar
  44. Lyon, G.J. & Novick, R.P. Peptide signaling in Staphylococcus aureus and other Gram-positive bacteria. Peptides 25, 1389–1403 (2004).
    Article CAS PubMed Google Scholar
  45. van Schaik, W. & Abee, T. The role of sigmaB in the stress response of Gram-positive bacteria–targets for food preservation and safety. Curr. Opin. Biotechnol. 16, 218–224 (2005).
    Article CAS PubMed Google Scholar
  46. de Vries, Y.P. et al. Deletion of sigB in Bacillus cereus affects spore properties. FEMS Microbiol. Lett. 252, 169–173 (2005).
    Article CAS PubMed Google Scholar
  47. Wilson, K.H. Efficiency of various bile salt preparations for stimulation of Clostridium difficile spore germination. J. Clin. Microbiol. 18, 1017–1019 (1983).
    CAS PubMed PubMed Central Google Scholar
  48. Bell, K.S. et al. Genome sequence of the enterobacterial phytopathogen Erwinia carotovora subsp. atroseptica and characterization of virulence factors. Proc. Natl. Acad. Sci. USA 101, 11105–11110 (2004).
    Article CAS PubMed PubMed Central Google Scholar
  49. Rutherford, K. et al. Artemis: sequence visualization and annotation. Bioinformatics 16, 944–945 (2000).
    Article CAS PubMed Google Scholar
  50. Carver, T.J. et al. ACT: the Artemis comparison tool. Bioinformatics 21, 3422–3423 (2005).
    Article CAS PubMed Google Scholar

Download references