DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal (original) (raw)

References

  1. Valencia-Sanchez, M.A., Liu, J., Hannon, G.J. & Parker, R. Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev. 20, 515–524 (2006).
    Article CAS Google Scholar
  2. Lewis, B.P., Burge, C.B. & Bartel, D.P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15–20 (2005).
    Article CAS Google Scholar
  3. Wienholds, E. & Plasterk, R.H. MicroRNA function in animal development. FEBS Lett. 579, 5911–5922 (2005).
    Article CAS Google Scholar
  4. Kanellopoulou, C. et al. Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev. 19, 489–501 (2005).
    Article CAS Google Scholar
  5. Bernstein, E. et al. Dicer is essential for mouse development. Nat. Genet. 35, 215–217 (2003).
    Article CAS Google Scholar
  6. Hammond, S.M. Dicing and slicing: the core machinery of the RNA interference pathway. FEBS Lett. 579, 5822–5829 (2005).
    Article CAS Google Scholar
  7. Hutvagner, G. et al. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293, 834–838 (2001).
    Article CAS Google Scholar
  8. Tomari, Y. & Zamore, P.D. MicroRNA biogenesis: Drosha can't cut it without a partner. Curr. Biol. 15, R61–R64 (2005).
    Article CAS Google Scholar
  9. Denli, A.M., Tops, B.B., Plasterk, R.H., Ketting, R.F. & Hannon, G.J. Processing of primary microRNAs by the Microprocessor complex. Nature 432, 231–235 (2004).
    Article CAS Google Scholar
  10. Gregory, R.I. et al. The Microprocessor complex mediates the genesis of microRNAs. Nature 432, 235–240 (2004).
    Article CAS Google Scholar
  11. Han, J. et al. The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev. 18, 3016–3027 (2004).
    Article CAS Google Scholar
  12. Landthaler, M., Yalcin, A. & Tuschl, T. The human DiGeorge syndrome critical region gene 8 and its D. melanogaster homolog are required for miRNA biogenesis. Curr. Biol. 14, 2162–2167 (2004).
    Article CAS Google Scholar
  13. Han, J. et al. Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell 125, 887–901 (2006).
    Article CAS Google Scholar
  14. Yi, R., Qin, Y., Macara, I.G. & Cullen, B.R. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev. 17, 3011–3016 (2003).
    Article CAS Google Scholar
  15. Lund, E., Guttinger, S., Calado, A., Dahlberg, J.E. & Kutay, U. Nuclear export of microRNA precursors. Science 303, 95–98 (2004).
    Article CAS Google Scholar
  16. Wu, H., Xu, H., Miraglia, L.J. & Crooke, S.T. Human RNase III is a 160-kDa protein involved in preribosomal RNA processing. J. Biol. Chem. 275, 36957–36965 (2000).
    Article CAS Google Scholar
  17. Houbaviy, H.B., Murray, M.F. & Sharp, P.A. Embryonic stem cell-specific microRNAs. Dev. Cell 5, 351–358 (2003).
    Article CAS Google Scholar
  18. Houbaviy, H.B., Dennis, L., Jaenisch, R. & Sharp, P.A. Characterization of a highly variable eutherian microRNA gene. RNA 11, 1245–1257 (2005).
    Article CAS Google Scholar
  19. Hatfield, S.D. et al. Stem cell division is regulated by the microRNA pathway. Nature 435, 974–978 (2005).
    Article CAS Google Scholar
  20. Hebert, J.M., Boyle, M. & Martin, G.R. mRNA localization studies suggest that murine FGF-5 plays a role in gastrulation. Development 112, 407–415 (1991).
    CAS PubMed Google Scholar
  21. Rathjen, J. et al. Formation of a primitive ectoderm like cell population, EPL cells, from ES cells in response to biologically derived factors. J. Cell Sci. 112, 601–612 (1999).
    CAS PubMed Google Scholar
  22. Pelton, T.A., Sharma, S., Schulz, T.C., Rathjen, J. & Rathjen, P.D. Transient pluripotent cell populations during primitive ectoderm formation: correlation of in vivo and in vitro pluripotent cell development. J. Cell Sci. 115, 329–339 (2002).
    CAS PubMed Google Scholar
  23. Kaji, K. et al. The NuRD component Mbd3 is required for pluripotency of embryonic stem cells. Nat. Cell Biol. 8, 285–292 (2006).
    Article CAS Google Scholar
  24. Feldman, N. et al. G9a-mediated irreversible epigenetic inactivation of Oct-3/4 during early embryogenesis. Nat. Cell Biol. 8, 188–194 (2006).
    Article CAS Google Scholar
  25. Murchison, E.P., Partridge, J.F., Tam, O.H., Cheloufi, S. & Hannon, G.J. Characterization of Dicer-deficient murine embryonic stem cells. Proc. Natl. Acad. Sci. USA 102, 12135–12140 (2005).
    Article CAS Google Scholar
  26. Blelloch, R.H. et al. Nuclear cloning of embryonal carcinoma cells. Proc. Natl. Acad. Sci. USA 101, 13985–13990 (2004).
    CAS PubMed Google Scholar
  27. Lau, N.C., Lim, L.P., Weinstein, E.G. & Bartel, D.P. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294, 858–862 (2001).
    Article CAS Google Scholar
  28. Di Cristofano, A., Pesce, B., Cordon-Cardo, C. & Pandolfi, P.P. Pten is essential for embryonic development and tumor suppression. Nat. Genet. 19, 348–355 (1998).
    Article CAS Google Scholar

Download references