Cytokine-secreting follicular T cells shape the antibody repertoire (original) (raw)

References

  1. MacLennan, I.C. Germinal centers. Annu. Rev. Immunol. 12, 117–139 (1994).
    Article CAS PubMed Google Scholar
  2. Kelsoe, G. Life and death in germinal centers (redux). Immunity 4, 107–111 (1996).
    Article CAS PubMed Google Scholar
  3. Allen, C.D., Okada, T. & Cyster, J.G. Germinal-center organization and cellular dynamics. Immunity 27, 190–202 (2007).
    Article CAS PubMed PubMed Central Google Scholar
  4. Fang, Y., Xu, C., Fu, Y.X., Holers, V.M. & Molina, H. Expression of complement receptors 1 and 2 on follicular dendritic cells is necessary for the generation of a strong antigen-specific IgG response. J. Immunol. 160, 5273–5279 (1998).
    CAS PubMed Google Scholar
  5. Hannum, L.G., Haberman, A.M., Anderson, S.M. & Shlomchik, M.J. Germinal center initiation, variable gene region hypermutation, and mutant B cell selection without detectable immune complexes on follicular dendritic cells. J. Exp. Med. 192, 931–942 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  6. Huntington, N.D. et al. CD45 links the B cell receptor with cell survival and is required for the persistence of germinal centers. Nat. Immunol. 7, 190–198 (2006).
    Article CAS PubMed Google Scholar
  7. Allen, D., Simon, T., Sablitzky, F., Rajewsky, K. & Cumano, A. Antibody engineering for the analysis of affinity maturation of an anti-hapten response. EMBO J. 7, 1995–2001 (1988).
    Article CAS PubMed PubMed Central Google Scholar
  8. Meyer-Hermann, M.E., Maini, P.K. & Iber, D. An analysis of B cell selection mechanisms in germinal centers. Math. Med. Biol. 23, 255–277 (2006).
    Article PubMed Google Scholar
  9. Allen, C.D., Okada, T., Tang, H.L. & Cyster, J.G. Imaging of germinal center selection events during affinity maturation. Science 315, 528–531 (2007).
    Article CAS PubMed Google Scholar
  10. Schwickert, T.A. et al. In vivo imaging of germinal centres reveals a dynamic open structure. Nature 446, 83–87 (2007).
    Article CAS PubMed Google Scholar
  11. King, C., Tangye, S.G. & Mackay, C.R. T follicular helper (TFH) cells in normal and dysregulated immune responses. Annu. Rev. Immunol. 26, 741–766 (2008).
    Article CAS PubMed Google Scholar
  12. Fazilleau, N., McHeyzer-Williams, L.J. & McHeyzer-Williams,, M.G. Local development of effector and memory T helper cells. Curr. Opin. Immunol. 19, 259–267 (2007).
    Article CAS PubMed Google Scholar
  13. Garside, P. et al. Visualization of specific B and T lymphocyte interactions in the lymph node. Science 281, 96–99 (1998).
    Article CAS PubMed Google Scholar
  14. Takahashi, Y., Dutta, P.R., Cerasoli, D.M. & Kelsoe, G. In situ studies of the primary immune response to (4-hydroxy-3-nitrophenyl)acetyl. V. Affinity maturation develops in two stages of clonal selection. J. Exp. Med. 187, 885–895 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  15. Chtanova, T. et al. T follicular helper cells express a distinctive transcriptional profile, reflecting their role as non-Th1/Th2 effector cells that provide help for B cells. J. Immunol. 173, 68–78 (2004).
    Article CAS PubMed Google Scholar
  16. Vogelzang, A. et al. A fundamental role for interleukin-21 in the generation of T follicular helper cells. Immunity 29, 127–137 (2008).
    Article CAS PubMed Google Scholar
  17. Nurieva, R.I. et al. Generation of T follicular helper cells is mediated by interleukin-21 but independent of T helper 1, 2, or 17 cell lineages. Immunity 29, 138–149 (2008).
    Article CAS PubMed PubMed Central Google Scholar
  18. Mohrs, K., Wakil, A.E., Killeen, N., Locksley, R.M. & Mohrs, M. A two-step process for cytokine production revealed by IL-4 dual-reporter mice. Immunity 23, 419–429 (2005).
    Article CAS PubMed PubMed Central Google Scholar
  19. Vinuesa, C.G., Tangye, S.G., Moser, B. & Mackay, C.R. Follicular B helper T cells in antibody responses and autoimmunity. Nat. Rev. Immunol. 5, 853–865 (2005).
    Article CAS PubMed Google Scholar
  20. Loke, P. et al. Inducible costimulator is required for type 2 antibody isotype switching but not T helper cell type 2 responses in chronic nematode infection. Proc. Natl. Acad. Sci. USA. 102, 9872–9877 (2005).
    Article CAS PubMed PubMed Central Google Scholar
  21. Tafuri, A. et al. ICOS is essential for effective T-helper-cell responses. Nature 409, 105–109 (2001).
    Article CAS PubMed Google Scholar
  22. Dong, C., Temann, U.A. & Flavell, R.A. Cutting edge: critical role of inducible costimulator in germinal center reactions. J. Immunol. 166, 3659–3662 (2001).
    Article CAS PubMed Google Scholar
  23. Finkelman, F.D. et al. Interleukin-4- and interleukin-13-mediated host protection against intestinal nematode parasites. Immunol. Rev. 201, 139–155 (2004).
    Article CAS PubMed Google Scholar
  24. Voehringer, D., Shinkai, K. & Locksley, R.M. Type 2 immunity reflects orchestrated recruitment of cells committed to IL-4 production. Immunity 20, 267–277 (2004).
    Article CAS PubMed Google Scholar
  25. Okada, T. et al. Antigen-engaged B cells undergo chemotaxis toward the T zone and form motile conjugates with helper T cells. PLoS Biol. 3, e150 (2005).
    Article PubMed PubMed Central Google Scholar
  26. Casamayor-Palleja, M., Feuillard, J., Ball, J., Drew, M. & MacLennan, I.C. Centrocytes rapidly adopt a memory B cell phenotype on co-culture with autologous germinal centre T cell-enriched preparations. Int. Immunol. 8, 737–744 (1996).
    Article CAS PubMed Google Scholar
  27. Muramatsu, M. et al. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102, 553–563 (2000).
    Article CAS PubMed Google Scholar
  28. Muramatsu, M. et al. Specific expression of activation-induced cytidine deaminase (AID), a novel member of the RNA-editing deaminase family in germinal center B cells. J. Biol. Chem. 274, 18470–18476 (1999).
    Article CAS PubMed Google Scholar
  29. Reiner, S.L., Zheng, S., Wang, Z.E., Stowring, L. & Locksley, R.M. Leishmania promastigotes evade interleukin 12 (IL-12) induction by macrophages and stimulate a broad range of cytokines from CD4+ T cells during initiation of infection. J. Exp. Med. 179, 447–456 (1994).
    Article CAS PubMed Google Scholar
  30. Bothwell, A.L. et al. Heavy chain variable region contribution to the NPb family of antibodies: somatic mutation evident in a γ2a variable region. Cell 24, 625–637 (1981).
    Article CAS PubMed Google Scholar
  31. Rajewsky, K., Forster, I. & Cumano, A. Evolutionary and somatic selection of the antibody repertoire in the mouse. Science 238, 1088–1094 (1987).
    Article CAS PubMed Google Scholar
  32. Jolly, C.J., Klix, N. & Neuberger, M.S. Rapid methods for the analysis of immunoglobulin gene hypermutation: application to transgenic and gene targeted mice. Nucleic Acids Res. 25, 1913–1919 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  33. Dorsett, Y. et al. MicroRNA-155 suppresses activation-induced cytidine deaminase-mediated Myc-Igh translocation. Immunity 28, 630–638 (2008).
    Article CAS PubMed PubMed Central Google Scholar
  34. Reiter, R. & Pfeffer, K. Impaired germinal centre formation and humoral immune response in the absence of CD28 and interleukin-4. Immunology 106, 222–228 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  35. Vajdy, M., Kosco-Vilbois, M.H., Kopf, M., Kohler, G. & Lycke, N. Impaired mucosal immune responses in interleukin 4-targeted mice. J. Exp. Med. 181, 41–53 (1995).
    Article CAS PubMed Google Scholar
  36. Andoh, A., Masuda, A., Yamakawa, M., Kumazawa, Y. & Kasajima, T. Absence of interleukin-4 enhances germinal center reaction in secondary immune response. Immunol. Lett. 73, 35–41 (2000).
    Article CAS PubMed Google Scholar
  37. Itano, A.A. & Jenkins, M.K. Antigen presentation to naive CD4 T cells in the lymph node. Nat. Immunol. 4, 733–739 (2003).
    Article CAS PubMed Google Scholar
  38. Nimmerjahn, F. & Ravetch, J.V. Fcγ receptors: old friends and new family members. Immunity 24, 19–28 (2006).
    Article CAS PubMed Google Scholar
  39. Reichert, P., Reinhardt, R.L., Ingulli, E. & Jenkins, M.K. Cutting edge: in vivo identification of TCR redistribution and polarized IL-2 production by naive CD4 T cells. J. Immunol. 166, 4278–4281 (2001).
    Article CAS PubMed Google Scholar
  40. Maldonado, R.A., Irvine, D.J., Schreiber, R. & Glimcher, L.H. A role for the immunological synapse in lineage commitment of CD4 lymphocytes. Nature 431, 527–532 (2004).
    Article CAS PubMed Google Scholar
  41. Phan, T.G. et al. High affinity germinal center B cells are actively selected into the plasma cell compartment. J. Exp. Med. 203, 2419–2424 (2006).
    Article CAS PubMed PubMed Central Google Scholar
  42. Tarlinton, D.M. Evolution in miniature: selection, survival and distribution of antigen reactive cells in the germinal centre. Immunol. Cell Biol. 86, 133–138 (2008).
    Article CAS PubMed Google Scholar
  43. Jacob, J., Przylepa, J., Miller, C. & Kelsoe, G. In situ studies of the primary immune response to (4-hydroxy-3-nitrophenyl)acetyl. III. The kinetics of V region mutation and selection in germinal center B cells. J. Exp. Med. 178, 1293–1307 (1993).
    Article CAS PubMed Google Scholar
  44. Dal Porto, J.M., Haberman, A.M., Shlomchik, M.J. & Kelsoe, G. Antigen drives very low affinity B cells to become plasmacytes and enter germinal centers. J. Immunol. 161, 5373–5381 (1998).
    CAS PubMed Google Scholar
  45. Zhou, C., Saxon, A. & Zhang, K. Human activation-induced cytidine deaminase is induced by IL-4 and negatively regulated by CD45: implication of CD45 as a Janus kinase phosphatase in antibody diversification. J. Immunol. 170, 1887–1893 (2003).
    Article CAS PubMed Google Scholar
  46. Dedeoglu, F., Horwitz, B., Chaudhuri, J., Alt, F.W. & Geha, R.S. Induction of activation-induced cytidine deaminase gene expression by IL-4 and CD40 ligation is dependent on STAT6 and NFκB. Int. Immunol. 16, 395–404 (2004).
    Article CAS PubMed Google Scholar
  47. de Leval, L. et al. The gene expression profile of nodal peripheral T-cell lymphoma demonstrates a molecular link between angioimmunoblastic T-cell lymphoma (AITL) and follicular helper T (TFH) cells. Blood 109, 4952–4963 (2007).
    Article CAS PubMed Google Scholar
  48. Zangani, M.M. et al. Lymphomas can develop from B cells chronically helped by idiotype-specific T cells. J. Exp. Med. 204, 1181–1191 (2007).
    Article CAS PubMed PubMed Central Google Scholar
  49. Shinkai, K., Mohrs, M. & Locksley, R.M. Helper T cells regulate type-2 innate immunity in vivo. Nature 420, 825–829 (2002).
    Article CAS PubMed Google Scholar
  50. Lalor, P.A., Nossal, G.J., Sanderson, R.D. & McHeyzer-Williams, M.G. Functional and molecular characterization of single, (4-hydroxy-3-nitrophenyl)acetyl (NP)-specific, IgG1+ B cells from antibody-secreting and memory B cell pathways in the C57BL/6 immune response to NP. Eur. J. Immunol. 22, 3001–3011 (1992).
    Article CAS PubMed Google Scholar

Download references