Type I and type II Fc receptors regulate innate and adaptive immunity (original) (raw)
Bournazos, S., Chow, S.K., Abboud, N., Casadevall, A. & Ravetch, J.V. Human IgG Fc domain engineering enhances antitoxin neutralizing antibody activity. J. Clin. Invest.124, 725–729 (2014). ArticleCASPubMedPubMed Central Google Scholar
DiLillo, D.J., Tan, G.S., Palese, P. & Ravetch, J.V. Broadly neutralizing hemagglutinin stalk-specific antibodies require FcγR interactions for protection against influenza virus in vivo . Nat. Med.20, 143–151 (2014). ArticleCASPubMedPubMed Central Google Scholar
Nimmerjahn, F. & Ravetch, J.V. Fcγ receptors as regulators of immune responses. Nat. Rev. Immunol.8, 34–47 (2008). ArticleCASPubMed Google Scholar
Nimmerjahn, F. & Ravetch, J.V. Antibody-mediated modulation of immune responses. Immunol. Rev.236, 265–275 (2010). ArticleCASPubMed Google Scholar
Anthony, R.M. & Ravetch, J.V. A novel role for the IgG Fc glycan: the anti-inflammatory activity of sialylated IgG Fcs. J. Clin. Immunol.30, S9–S14 (2010). ArticleCASPubMed Google Scholar
Bournazos, S., Woof, J.M., Hart, S.P. & Dransfield, I. Functional and clinical consequences of Fc receptor polymorphic and copy number variants. Clin. Exp. Immunol.157, 244–254 (2009). ArticleCASPubMedPubMed Central Google Scholar
Sondermann, P., Pincetic, A., Maamary, J., Lammens, K. & Ravetch, J.V. General mechanism for modulating immunoglobulin effector function. Proc. Natl. Acad. Sci. USA110, 9868–9872 (2013). ArticleCASPubMedPubMed Central Google Scholar
Nimmerjahn, F. & Ravetch, J.V. Fc-receptors as regulators of immunity. Adv. Immunol.96, 179–204 (2007). ArticleCASPubMed Google Scholar
Nimmerjahn, F. & Ravetch, J.V. FcγRs in health and disease. Curr. Top. Microbiol. Immunol.350, 105–125 (2011). CASPubMed Google Scholar
Smith, K.G. & Clatworthy, M.R. FcγRIIB in autoimmunity and infection: evolutionary and therapeutic implications. Nat. Rev. Immunol.10, 328–343 (2010). ArticleCASPubMedPubMed Central Google Scholar
Kimberly, R.P. et al. Diversity and duplicity: human Fcγ receptors in host defense and autoimmunity. Immunol. Res.26, 177–189 (2002). ArticleCASPubMed Google Scholar
Takai, T. Fc receptors and their role in immune regulation and autoimmunity. J. Clin. Immunol.25, 1–18 (2005). ArticleCASPubMed Google Scholar
Jefferis, R. Isotype and glycoform selection for antibody therapeutics. Arch. Biochem. Biophys.526, 159–166 (2012). ArticleCASPubMed Google Scholar
Narciso, J.E. et al. Analysis of the antibody structure based on high-resolution crystallographic studies. N. Biotechnol.28, 435–447 (2011). ArticleCASPubMed Google Scholar
Nimmerjahn, F. & Ravetch, J.V. Divergent immunoglobulin g subclass activity through selective Fc receptor binding. Science310, 1510–1512 (2005). ArticleCASPubMed Google Scholar
Krapp, S., Mimura, Y., Jefferis, R., Huber, R. & Sondermann, P. Structural analysis of human IgG-Fc glycoforms reveals a correlation between glycosylation and structural integrity. J. Mol. Biol.325, 979–989 (2003). ArticleCASPubMed Google Scholar
Teplyakov, A., Zhao, Y., Malia, T.J., Obmolova, G. & Gilliland, G.L. IgG2 Fc structure and the dynamic features of the IgG CH2–CH3 interface. Mol. Immunol.56, 131–139 (2013). ArticleCASPubMed Google Scholar
Garman, S.C., Wurzburg, B.A., Tarchevskaya, S.S., Kinet, J.P. & Jardetzky, T.S. Structure of the Fc fragment of human IgE bound to its high-affinity receptor Fc epsilonRI alpha. Nature406, 259–266 (2000). ArticleCASPubMed Google Scholar
Sondermann, P., Huber, R., Oosthuizen, V. & Jacob, U. The 3.2-A crystal structure of the human IgG1 Fc fragment-FcγRIII complex. Nature406, 267–273 (2000). ArticleCASPubMed Google Scholar
Bruhns, P. et al. Specificity and affinity of human Fcγ receptors and their polymorphic variants for human IgG subclasses. Blood113, 3716–3725 (2009). ArticleCASPubMed Google Scholar
Kaneko, Y., Nimmerjahn, F. & Ravetch, J.V. Anti-inflammatory activity of immunoglobulin G resulting from Fc sialylation. Science313, 670–673 (2006). ArticleCASPubMed Google Scholar
Lux, A. & Nimmerjahn, F. Impact of differential glycosylation on IgG activity. Adv. Exp. Med. Biol.780, 113–124 (2011). ArticleCASPubMed Google Scholar
Shields, R.L. et al. Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human FcγRIII and antibody-dependent cellular toxicity. J. Biol. Chem.277, 26733–26740 (2002). ArticleCASPubMed Google Scholar
Scherer, H.U. et al. Glycan profiling of anti-citrullinated protein antibodies isolated from human serum and synovial fluid. Arthritis Rheum.62, 1620–1629 (2010). ArticleCASPubMed Google Scholar
van de Geijn, F.E. et al. Immunoglobulin G galactosylation and sialylation are associated with pregnancy-induced improvement of rheumatoid arthritis and the postpartum flare: results from a large prospective cohort study. Arthritis Res. Ther.11, R193 (2009). ArticlePubMedPubMed CentralCAS Google Scholar
Shinzaki, S. et al. IgG oligosaccharide alterations are a novel diagnostic marker for disease activity and the clinical course of inflammatory bowel disease. Am. J. Gastroenterol.103, 1173–1181 (2008). ArticlePubMed Google Scholar
Tomana, M., Schrohenloher, R.E., Koopman, W.J., Alarcon, G.S. & Paul, W.A. Abnormal glycosylation of serum IgG from patients with chronic inflammatory diseases. Arthritis Rheum.31, 333–338 (1988). ArticleCASPubMed Google Scholar
Ferrara, C. et al. Unique carbohydrate-carbohydrate interactions are required for high affinity binding between FcγRIII and antibodies lacking core fucose. Proc. Natl. Acad. Sci. USA108, 12669–12674 (2011). ArticleCASPubMedPubMed Central Google Scholar
Borrok, M.J., Jung, S.T., Kang, T.H., Monzingo, A.F. & Georgiou, G. Revisiting the role of glycosylation in the structure of human IgG Fc. ACS Chem. Biol.7, 1596–1602 (2012). ArticleCASPubMedPubMed Central Google Scholar
Albert, H., Collin, M., Dudziak, D., Ravetch, J.V. & Nimmerjahn, F. In vivo enzymatic modulation of IgG glycosylation inhibits autoimmune disease in an IgG subclass-dependent manner. Proc. Natl. Acad. Sci. USA105, 15005–15009 (2008). ArticleCASPubMedPubMed Central Google Scholar
Barb, A.W. & Prestegard, J.H. NMR analysis demonstrates immunoglobulin G N-glycans are accessible and dynamic. Nat. Chem. Biol.7, 147–153 (2011). ArticleCASPubMedPubMed Central Google Scholar
Wormald, M.R. et al. Variations in oligosaccharide-protein interactions in immunoglobulin G determine the site-specific glycosylation profiles and modulate the dynamic motion of the Fc oligosaccharides. Biochemistry36, 1370–1380 (1997). ArticleCASPubMed Google Scholar
Anthony, R.M., Wermeling, F., Karlsson, M.C. & Ravetch, J.V. Identification of a receptor required for the anti-inflammatory activity of IVIG. Proc. Natl. Acad. Sci. USA105, 19571–19578 (2008). ArticleCASPubMedPubMed Central Google Scholar
Hess, C. et al. T cell-independent B cell activation induces immunosuppressive sialylated IgG antibodies. J. Clin. Invest.123, 3788–3796 (2013). ArticleCASPubMedPubMed Central Google Scholar
Borthakur, S., Andrejeva, G. & McDonnell, J.M. Basis of the intrinsic flexibility of the Cɛ3 domain of IgE. Biochemistry50, 4608–4614 (2011). ArticleCASPubMed Google Scholar
Dhaliwal, B. et al. Crystal structure of IgE bound to its B-cell receptor CD23 reveals a mechanism of reciprocal allosteric inhibition with high affinity receptor FcepsilonRI. Proc. Natl. Acad. Sci. USA109, 12686–12691 (2012). ArticleCASPubMedPubMed Central Google Scholar
Selman, M.H. et al. Changes in antigen-specific IgG1 Fc N-glycosylation upon influenza and tetanus vaccination. Mol. Cell. Proteomics11, M111.014563 (2012). ArticlePubMedCAS Google Scholar
Espy, C. et al. Sialylation levels of anti-proteinase 3 antibodies are associated with the activity of granulomatosis with polyangiitis (Wegener's). Arthritis Rheum.63, 2105–2115 (2011). ArticleCASPubMed Google Scholar
Oefner, C.M. et al. Tolerance induction with T cell-dependent protein antigens induces regulatory sialylated IgGs. J. Allergy Clin. Immunol.129, 1647–1655 (2012). ArticleCASPubMed Google Scholar
Diaz de Ståhl, T. & Heyman, B. IgG2a-mediated enhancement of antibody responses is dependent on FcRγ+ bone marrow-derived cells. Scand. J. Immunol.54, 495–500 (2001). ArticlePubMed Google Scholar
Kalergis, A.M. & Ravetch, J.V. Inducing tumor immunity through the selective engagement of activating Fcγ receptors on dendritic cells. J. Exp. Med.195, 1653–1659 (2002). ArticleCASPubMedPubMed Central Google Scholar
Sutterwala, F.S., Noel, G.J., Clynes, R. & Mosser, D.M. Selective suppression of interleukin-12 induction after macrophage receptor ligation. J. Exp. Med.185, 1977–1985 (1997). ArticleCASPubMedPubMed Central Google Scholar
Boruchov, A.M. et al. Activating and inhibitory IgG Fc receptors on human DCs mediate opposing functions. J. Clin. Invest.115, 2914–2923 (2005). ArticleCASPubMedPubMed Central Google Scholar
Dhodapkar, K.M. et al. Selective blockade of inhibitory Fcγ receptor enables human dendritic cell maturation with IL-12p70 production and immunity to antibody-coated tumor cells. Proc. Natl. Acad. Sci. USA102, 2910–2915 (2005). ArticleCASPubMedPubMed Central Google Scholar
Blank, U., Launay, P., Benhamou, M. & Monteiro, R.C. Inhibitory ITAMs as novel regulators of immunity. Immunol. Rev.232, 59–71 (2009). ArticleCASPubMed Google Scholar
Swanson, J.A. & Hoppe, A.D. The coordination of signaling during Fc receptor-mediated phagocytosis. J. Leukoc. Biol.76, 1093–1103 (2004). ArticleCASPubMed Google Scholar
Regnault, A. et al. Fcγ receptor-mediated induction of dendritic cell maturation and major histocompatibility complex class I-restricted antigen presentation after immune complex internalization. J. Exp. Med.189, 371–380 (1999). ArticleCASPubMedPubMed Central Google Scholar
Dhodapkar, K.M., Krasovsky, J., Williamson, B. & Dhodapkar, M.V. Antitumor monoclonal antibodies enhance cross-presentation of cellular antigens and the generation of myeloma-specific killer T cells by dendritic cells. J. Exp. Med.195, 125–133 (2002). ArticleCASPubMedPubMed Central Google Scholar
Schuurhuis, D.H. et al. Immune complex-loaded dendritic cells are superior to soluble immune complexes as antitumor vaccine. J. Immunol.176, 4573–4580 (2006). ArticleCASPubMed Google Scholar
Desai, D.D. et al. Fcγ receptor IIB on dendritic cells enforces peripheral tolerance by inhibiting effector T cell responses. J. Immunol.178, 6217–6226 (2007). ArticleCASPubMed Google Scholar
Mantovani, A. et al. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol.25, 677–686 (2004). ArticleCASPubMed Google Scholar
Guilliams, M., Bruhns, P., Saeys, Y., Hammad, H. & Lambrecht, B.N. The function of Fcγ receptors in dendritic cells and macrophages. Nat. Rev. Immunol.14, 94–108 (2014). ArticleCASPubMed Google Scholar
Jackson, S.M., Wilson, P.C., James, J.A. & Capra, J.D. Human B cell subsets. Adv. Immunol.98, 151–224 (2008). ArticleCASPubMed Google Scholar
Fujiwara, H. et al. The absence of IgE antibody-mediated augmentation of immune responses in CD23-deficient mice. Proc. Natl. Acad. Sci. USA91, 6835–6839 (1994). ArticleCASPubMedPubMed Central Google Scholar
Pearse, R.N. et al. SHIP recruitment attenuates FcγRIIB-induced B cell apoptosis. Immunity10, 753–760 (1999). ArticleCASPubMed Google Scholar
Tew, J.G., Wu, J., Fakher, M., Szakal, A.K. & Qin, D. Follicular dendritic cells: beyond the necessity of T-cell help. Trends Immunol.22, 361–367 (2001). ArticleCASPubMed Google Scholar
Barrington, R.A., Pozdnyakova, O., Zafari, M.R., Benjamin, C.D. & Carroll, M.C. B lymphocyte memory: role of stromal cell complement and FcγRIIB receptors. J. Exp. Med.196, 1189–1199 (2002). ArticleCASPubMedPubMed Central Google Scholar
Ravetch, J.V. & Carroll, M.C. in Molecular Biology of B Cells (eds. Honjo, T., Alt, F.W. & Neuberger, M.S.) 275–287 (Elsevier, 2004).
Ravetch, J.V. & Nussenzweig, M. Killing some to make way for others. Nat. Immunol.8, 337–339 (2007). ArticleCASPubMed Google Scholar
Xiang, Z. et al. FcγRIIb controls bone marrow plasma cell persistence and apoptosis. Nat. Immunol.8, 419–429 (2007). ArticleCASPubMed Google Scholar
González, D. et al. Classical dengue hemorrhagic fever resulting from two dengue infections spaced 20 years or more apart: Havana, Dengue 3 epidemic, 2001–2002. Int. J. Infect. Dis.9, 280–285 (2005). ArticlePubMed Google Scholar
Kliks, S.C., Nimmanitya, S., Nisalak, A. & Burke, D.S. Evidence that maternal dengue antibodies are important in the development of dengue hemorrhagic fever in infants. Am. J. Trop. Med. Hyg.38, 411–419 (1988). ArticleCASPubMed Google Scholar
Kliks, S. Antibody-enhanced infection of monocytes as the pathogenetic mechanism for severe dengue illness. AIDS Res. Hum. Retroviruses6, 993–998 (1990). ArticleCASPubMed Google Scholar
Duerr, A. et al. Extended follow-up confirms early vaccine-enhanced risk of HIV acquisition and demonstrates waning effect over time among participants in a randomized trial of recombinant adenovirus HIV vaccine (Step Study). J. Infect. Dis.206, 258–266 (2012). ArticlePubMedPubMed Central Google Scholar
Monsalvo, A.C. et al. Severe pandemic 2009 H1N1 influenza disease due to pathogenic immune complexes. Nat. Med.17, 195–199 (2011). ArticleCASPubMed Google Scholar
Guihot, A. et al. Low titers of serum antibodies inhibiting hemagglutination predict fatal fulminant influenza A(H1N1) 2009 infection. Am. J. Respir. Crit. Care Med.189, 1240–1249 (2014). ArticleCASPubMed Google Scholar
Ubol, S. & Halstead, S.B. How innate immune mechanisms contribute to antibody-enhanced viral infections. Clin. Vaccine Immunol.17, 1829–1835 (2010). ArticleCASPubMedPubMed Central Google Scholar
El Bakkouri, K. et al. Universal vaccine based on ectodomain of matrix protein 2 of influenza A: Fc receptors and alveolar macrophages mediate protection. J. Immunol.186, 1022–1031 (2011). ArticleCASPubMed Google Scholar
Corti, D. et al. A neutralizing antibody selected from plasma cells that binds to group 1 and group 2 influenza A hemagglutinins. Science333, 850–856 (2011). ArticleCASPubMed Google Scholar
Hessell, A.J. et al. Fc receptor but not complement binding is important in antibody protection against HIV. Nature449, 101–104 (2007). ArticleCASPubMed Google Scholar
Tedder, T.F., Baras, A. & Xiu, Y. Fcγ receptor-dependent effector mechanisms regulate CD19 and CD20 antibody immunotherapies for B lymphocyte malignancies and autoimmunity. Springer Semin. Immunopathol.28, 351–364 (2006). ArticleCASPubMed Google Scholar
Cartron, G. et al. Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcγRIIIa gene. Blood99, 754–758 (2002). ArticleCASPubMed Google Scholar
Weng, W.K. & Levy, R. Two immunoglobulin G fragment C receptor polymorphisms independently predict response to rituximab in patients with follicular lymphoma. J. Clin. Oncol.21, 3940–3947 (2003). ArticleCASPubMed Google Scholar
Clynes, R.A., Towers, T.L., Presta, L.G. & Ravetch, J.V. Inhibitory Fc receptors modulate in vivo cytoxicity against tumor targets. Nat. Med.6, 443–446 (2000). ArticleCASPubMed Google Scholar
Uchida, J. et al. The innate mononuclear phagocyte network depletes B lymphocytes through Fc receptor-dependent mechanisms during anti-CD20 antibody immunotherapy. J. Exp. Med.199, 1659–1669 (2004). ArticleCASPubMedPubMed Central Google Scholar
Musolino, A. et al. Immunoglobulin G fragment C receptor polymorphisms and clinical efficacy of trastuzumab-based therapy in patients with HER-2/neu-positive metastatic breast cancer. J. Clin. Oncol.26, 1789–1796 (2008). ArticleCASPubMed Google Scholar
Varchetta, S. et al. Elements related to heterogeneity of antibody-dependent cell cytotoxicity in patients under trastuzumab therapy for primary operable breast cancer overexpressing Her2. Cancer Res.67, 11991–11999 (2007). ArticleCASPubMed Google Scholar
Bibeau, F. et al. Impact of FcγRIIa-FcγRIIIa polymorphisms and KRAS mutations on the clinical outcome of patients with metastatic colorectal cancer treated with cetuximab plus irinotecan. J. Clin. Oncol.27, 1122–1129 (2009). ArticleCASPubMed Google Scholar
Smith, P., DiLillo, D.J., Bournazos, S., Li, F. & Ravetch, J.V. Mouse model recapitulating human Fcγ receptor structural and functional diversity. Proc. Natl. Acad. Sci. USA109, 6181–6186 (2012). ArticleCASPubMedPubMed Central Google Scholar
Goede, V. et al. Obinutuzumab plus chlorambucil in patients with CLL and coexisting conditions. N. Engl. J. Med.370, 1101–1110 (2014). ArticleCASPubMed Google Scholar
Li, F. & Ravetch, J.V. Inhibitory Fcγ receptor engagement drives adjuvant and anti-tumor activities of agonistic CD40 antibodies. Science333, 1030–1034 (2011). ArticleCASPubMedPubMed Central Google Scholar
White, A.L. et al. Interaction with FcγRIIB is critical for the agonistic activity of anti-CD40 monoclonal antibody. J. Immunol.187, 1754–1763 (2011). ArticleCASPubMed Google Scholar
Xu, Y. et al. FcγRs modulate cytotoxicity of anti-Fas antibodies: implications for agonistic antibody-based therapeutics. J. Immunol.171, 562–568 (2003). ArticleCASPubMed Google Scholar
Wilson, N.S. et al. An Fcγ receptor-dependent mechanism drives antibody-mediated target-receptor signaling in cancer cells. Cancer Cell19, 101–113 (2011). ArticleCASPubMed Google Scholar
Li, F. & Ravetch, J.V. A general requirement for FcγRIIB co-engagement of agonistic anti-TNFR antibodies. Cell Cycle11, 3343–3344 (2012). ArticleCASPubMedPubMed Central Google Scholar
Chuntharapai, A. et al. Isotype-dependent inhibition of tumor growth in vivo by monoclonal antibodies to death receptor 4. J. Immunol.166, 4891–4898 (2001). CASPubMed Google Scholar
Li, F. & Ravetch, J.V. Antitumor activities of agonistic anti-TNFR antibodies require differential FcγRIIB coengagement in vivo . Proc. Natl. Acad. Sci. USA110, 19501–19506 (2013). ArticleCASPubMedPubMed Central Google Scholar
Bulliard, Y. et al. Activating Fcγ receptors contribute to the antitumor activities of immunoregulatory receptor-targeting antibodies. J. Exp. Med.210, 1685–1693 (2013). ArticleCASPubMedPubMed Central Google Scholar
Simpson, T.R. et al. Fc-dependent depletion of tumor-infiltrating regulatory T cells co-defines the efficacy of anti-CTLA-4 therapy against melanoma. J. Exp. Med.210, 1695–1710 (2013). ArticleCASPubMedPubMed Central Google Scholar
Imbach, P. et al. High-dose intravenous gammaglobulin for idiopathic thrombocytopenic purpura in childhood. Lancet1, 1228–1231 (1981). ArticleCASPubMed Google Scholar
Anthony, R.M., Wermeling, F. & Ravetch, J.V. Novel roles for the IgG Fc glycan. Ann. NY Acad. Sci.1253, 170–180 (2012). ArticleCASPubMed Google Scholar
Nimmerjahn, F. & Ravetch, J.V. Anti-inflammatory actions of intravenous immunoglobulin. Annu. Rev. Immunol.26, 513–533 (2008). ArticleCASPubMed Google Scholar
Debré, M. et al. Infusion of Fcγ fragments for treatment of children with acute immune thrombocytopenic purpura. Lancet342, 945–949 (1993). ArticlePubMed Google Scholar
Schwab, I. et al. Broad requirement for terminal sialic acid residues and FcγRIIB for the preventive and therapeutic activity of intravenous immunoglobulins in vivo . Eur. J. Immunol.44, 1444–1453 (2014). ArticleCASPubMed Google Scholar
Crow, A.R. et al. IVIg-mediated amelioration of murine ITP via FcγRIIB is independent of SHIP1, SHP-1, and Btk activity. Blood102, 558–560 (2003). ArticleCASPubMed Google Scholar
Crow, A.R., Song, S., Semple, J.W., Freedman, J. & Lazarus, A.H. IVIg inhibits reticuloendothelial system function and ameliorates murine passive-immune thrombocytopenia independent of anti-idiotype reactivity. Br. J. Haematol.115, 679–686 (2001). ArticleCASPubMed Google Scholar
Tackenberg, B. et al. Impaired inhibitory Fcγ receptor IIB expression on B cells in chronic inflammatory demyelinating polyneuropathy. Proc. Natl. Acad. Sci. USA106, 4788–4792 (2009). ArticleCASPubMedPubMed Central Google Scholar
Portman, M.A., Wiener, H.W., Silva, M., Shendre, A. & Shrestha, S. DC-SIGN gene promoter variants and IVIG treatment response in Kawasaki disease. Pediatr. Rheumatol. Online J.11, 32 (2013). ArticlePubMedPubMed Central Google Scholar
Crow, A.R., Song, S., Semple, J.W., Freedman, J. & Lazarus, A.H. A role for IL-1 receptor antagonist or other cytokines in the acute therapeutic effects of IVIg? Blood109, 155–158 (2007). ArticleCASPubMed Google Scholar
Schwab, I., Biburger, M., Kronke, G., Schett, G. & Nimmerjahn, F. IVIg-mediated amelioration of ITP in mice is dependent on sialic acid and SIGNR1. Eur. J. Immunol.42, 826–830 (2012). ArticleCASPubMed Google Scholar