Peripheral regulatory T lymphocytes recirculating to the thymus suppress the development of their precursors (original) (raw)

References

  1. Sakaguchi, S., Miyara, M., Costantino, C.M. & Hafler, D.A. FOXP3+ regulatory T cells in the human immune system. Nat. Rev. Immunol. 10, 490–500 (2010).
    CAS PubMed Google Scholar
  2. Josefowicz, S.Z., Lu, L.F. & Rudensky, A.Y. Regulatory T cells: mechanisms of differentiation and function. Annu. Rev. Immunol. 30, 531–564 (2012).
    Article CAS PubMed PubMed Central Google Scholar
  3. Romagnoli, P., Hudrisier, D. & van Meerwijk, J.P.M. Preferential recognition of self-antigens despite normal thymic deletion of CD4+CD25+ regulatory T cells. J. Immunol. 168, 1644–1648 (2002).
    CAS PubMed Google Scholar
  4. Hsieh, C.S. et al. Recognition of the peripheral self by naturally arising CD25+ CD4+ T cell receptors. Immunity 21, 267–277 (2004).
    CAS PubMed Google Scholar
  5. Chidgey, A., Dudakov, J., Seach, N. & Boyd, R. Impact of niche aging on thymic regeneration and immune reconstitution. Semin. Immunol. 19, 331–340 (2007).
    CAS PubMed Google Scholar
  6. Nikolich-Žugich, J. Ageing and life-long maintenance of T-cell subsets in the face of latent persistent infections. Nat. Rev. Immunol. 8, 512–522 (2008).
    PubMed PubMed Central Google Scholar
  7. Yu, W. et al. Continued RAG expression in late stages of B cell development and no apparent re-induction after immunization. Nature 400, 682–687 (1999).
    CAS PubMed Google Scholar
  8. Borgulya, P., Kishi, H., Uematsu, Y. & von Boehmer, H. Exclusion and inclusion of alpha and beta T cell receptor alleles. Cell 69, 529–537 (1992).
    CAS PubMed Google Scholar
  9. McCaughtry, T.M., Wilken, M.S. & Hogquist, K.A. Thymic emigration revisited. J. Exp. Med. 204, 2513–2520 (2007).
    CAS PubMed PubMed Central Google Scholar
  10. Liston, A. et al. Differentiation of regulatory Foxp3+ T cells in the thymic cortex. Proc. Natl. Acad. Sci. USA 105, 11903–11908 (2008).
    CAS PubMed PubMed Central Google Scholar
  11. Almeida, A.R. et al. Quorum-sensing in CD4+ T cell homeostasis: a hypothesis and a model. Front Immunol. 3, 125 (2012).
    CAS PubMed PubMed Central Google Scholar
  12. Liston, A. & Gray, D.H. Homeostatic control of regulatory T cell diversity. Nat. Rev. Immunol. 14, 154–165 (2014).
    CAS PubMed Google Scholar
  13. Cuss, S.M. & Green, E.A. Abrogation of CD40–CD154 signaling impedes the homeostasis of thymic resident regulatory T cells by altering the levels of IL-2, but does not affect regulatory T cell development. J. Immunol. 189, 1717–1725 (2012).
    CAS PubMed PubMed Central Google Scholar
  14. Yang, E., Zou, T., Leichner, T.M., Zhang, S.L. & Kambayashi, T. Both retention and recirculation contribute to long-lived regulatory T-cell accumulation in the thymus. Eur. J. Immunol. 44, 2712–2720 (2014).
    CAS PubMed PubMed Central Google Scholar
  15. Attridge, K. & Walker, L.S. Homeostasis and function of regulatory T cells (Tregs) in vivo: lessons from TCR-transgenic Tregs. Immunol. Rev. 259, 23–39 (2014).
    CAS PubMed PubMed Central Google Scholar
  16. Fink, P.J., Swan, K., Turk, G., Moore, M.W. & Carbone, F.R. Both intrathymic and peripheral selection modulate the differential expression of Vβ5 among CD4+ and CD8+ T cells. J. Exp. Med. 176, 1733–1738 (1992).
    CAS PubMed Google Scholar
  17. McMahan, C.J. & Fink, P.J. RAG reexpression and DNA recombination at T cell receptor loci in peripheral CD4+ T cells. Immunity 9, 637–647 (1998).
    CAS PubMed Google Scholar
  18. Papiernik, M., de Moraes, M.L., Pontoux, C., Vasseur, F. & Penit, C. Regulatory CD4 T cells: expression of IL-2Rα chain, resistance to clonal deletion and IL-2 dependency. Int. Immunol. 10, 371–378 (1998).
    CAS PubMed Google Scholar
  19. Zhan, Y., Corbett, A.J., Brady, J.L., Sutherland, R.M. & Lew, A.M. Delayed rejection of fetal pig pancreas in CD4 cell deficient mice was correlated with residual helper activity. Xenotransplantation 7, 267–274 (2000).
    CAS PubMed Google Scholar
  20. Agus, D.B., Surh, C.D. & Sprent, J. Re-entry of T cells to the adult thymus is restricted to activated T cells. J. Exp. Med. 173, 1039–1046 (1991).
    CAS PubMed Google Scholar
  21. Leng, Q., Nie, Y., Zou, Y. & Chen, J. Elevated CXCL12 expression in the bone marrow of NOD mice is associated with altered T cell and stem cell trafficking and diabetes development. BMC Immunol. 9, 51 (2008).
    PubMed PubMed Central Google Scholar
  22. Bajoghli, B. et al. Evolution of genetic networks underlying the emergence of thymopoiesis in vertebrates. Cell 138, 186–197 (2009).
    CAS PubMed Google Scholar
  23. Joller, N. et al. Treg cells expressing the coinhibitory molecule TIGIT selectively inhibit proinflammatory Th1 and Th17 cell responses. Immunity 40, 569–581 (2014).
    CAS PubMed PubMed Central Google Scholar
  24. Lee, H.M. & Hsieh, C.S. Rare development of Foxp3+ thymocytes in the CD4+CD8+ subset. J. Immunol. 183, 2261–2266 (2009).
    CAS PubMed Google Scholar
  25. Pandiyan, P., Zheng, L., Ishihara, S., Reed, J. & Lenardo, M.J. CD4+CD25+Foxp3+ regulatory T cells induce cytokine deprivation-mediated apoptosis of effector CD4+ T cells. Nat. Immunol. 8, 1353–1362 (2007).
    CAS PubMed Google Scholar
  26. Cheng, G., Yu, A. & Malek, T.R. T-cell tolerance and the multi-functional role of IL-2R signaling in T-regulatory cells. Immunol. Rev. 241, 63–76 (2011).
    CAS PubMed PubMed Central Google Scholar
  27. Lio, C.W. & Hsieh, C.S. A two-step process for thymic regulatory T cell development. Immunity 28, 100–111 (2008).
    CAS PubMed PubMed Central Google Scholar
  28. Kimmig, S. et al. Two subsets of naive T helper cells with distinct T cell receptor excision circle content in human adult peripheral blood. J. Exp. Med. 195, 789–794 (2002).
    CAS PubMed PubMed Central Google Scholar
  29. Miyara, M. et al. Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity 30, 899–911 (2009).
    CAS PubMed Google Scholar
  30. Dominguez-Villar, M., Baecher-Allan, C.M. & Hafler, D.A. Identification of T helper type 1-like, Foxp3+ regulatory T cells in human autoimmune disease. Nat. Med. 17, 673–675 (2011).
    CAS PubMed PubMed Central Google Scholar
  31. Duhen, T., Duhen, R., Lanzavecchia, A., Sallusto, F. & Campbell, D.J. Functionally distinct subsets of human FOXP3+ Treg cells that phenotypically mirror effector Th cells. Blood 119, 4430–4440 (2012).
    CAS PubMed PubMed Central Google Scholar
  32. Bosco, N., Agenes, F., Rolink, A.G. & Ceredig, R. Peripheral T cell lymphopenia and concomitant enrichment in naturally arising regulatory T cells: the case of the pre-Tα gene-deleted mouse. J. Immunol. 177, 5014–5023 (2006).
    CAS PubMed Google Scholar
  33. Romagnoli, P. et al. The thymic niche does not limit development of the naturally diverse population of mouse regulatory T lymphocytes. J. Immunol. 189, 3831–3837 (2012).
    CAS PubMed Google Scholar
  34. Smigiel, K.S. et al. CCR7 provides localized access to IL-2 and defines homeostatically distinct regulatory T cell subsets. J. Exp. Med. 211, 121–136 (2014).
    CAS PubMed PubMed Central Google Scholar
  35. Tai, X. et al. Foxp3 transcription factor is proapoptotic and lethal to developing regulatory T cells unless counterbalanced by cytokine survival signals. Immunity 38, 1116–1128 (2013).
    CAS PubMed PubMed Central Google Scholar
  36. Yasunaga, J. et al. Impaired production of naive T lymphocytes in human T-cell leukemia virus type I-infected individuals: its implications in the immunodeficient state. Blood 97, 3177–3183 (2001).
    CAS Google Scholar
  37. Pilarski, L.M., Mant, M.J., Ruether, B.A. & Belch, A. Severe deficiency of B lymphocytes in peripheral blood from multiple myeloma patients. J. Clin. Invest. 74, 1301–1306 (1984).
    CAS PubMed PubMed Central Google Scholar
  38. Fisson, S. et al. Continuous activation of autoreactive CD4+ CD25+ regulatory T cells in the steady state. J. Exp. Med. 198, 737–746 (2003).
    CAS PubMed PubMed Central Google Scholar
  39. Boursalian, T.E., Golob, J., Soper, D.M., Cooper, C.J. & Fink, P.J. Continued maturation of thymic emigrants in the periphery. Nat. Immunol. 5, 418–425 (2004).
    CAS PubMed Google Scholar
  40. Trapnell, C. et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 7, 562–578 (2012).
    CAS PubMed PubMed Central Google Scholar
  41. Anders, S. & Huber, W. Differential expression analysis for sequence count data. Genome Biol. 11, R106 (2010).
    CAS PubMed PubMed Central Google Scholar
  42. Pavlidis, P. & Noble, W.S. Matrix2png: a utility for visualizing matrix data. Bioinformatics 19, 295–296 (2003).
    CAS PubMed Google Scholar
  43. Cabaniols, J.P., Fazilleau, N., Casrouge, A., Kourilsky, P. & Kanellopoulos, J.M. Most α/β T cell receptor diversity is due to terminal deoxynucleotidyl transferase. J. Exp. Med. 194, 1385–1390 (2001).
    CAS PubMed PubMed Central Google Scholar
  44. Fazilleau, N. et al. T cell repertoire diversity is required for relapses in myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis. J. Immunol. 178, 4865–4875 (2007).
    CAS PubMed Google Scholar
  45. Arden, B., Clark, S.P., Kabelitz, D. & Mak, T.W. Mouse T-cell receptor variable gene segment families. Immunogenetics 42, 501–530 (1995).
    CAS PubMed Google Scholar

Download references