Visualizing regulatory T cell control of autoimmune responses in nonobese diabetic mice (original) (raw)
References
Sakaguchi, S. Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat. Immunol.6, 345–352 (2005). ArticleCAS Google Scholar
Chatenoud, L., Salomon, B. & Bluestone, J.A. Suppressor T cells–they're back and critical for regulation of autoimmunity! Immunol. Rev.182, 149–163 (2001). ArticleCAS Google Scholar
Wood, K.J. & Sakaguchi, S. Regulatory T cells in transplantation tolerance. Nat. Rev. Immunol.3, 199–210 (2003). ArticleCAS Google Scholar
Singh, B. et al. Control of intestinal inflammation by regulatory T cells. Immunol. Rev.182, 190–200 (2001). ArticleCAS Google Scholar
Curotto de Lafaille, M.A. & Lafaille, J.J. CD4+ regulatory T cells in autoimmunity and allergy. Curr. Opin. Immunol.14, 771–778 (2002). ArticleCAS Google Scholar
Salomon, B. et al. B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity12, 431–440 (2000). ArticleCAS Google Scholar
Tang, Q. et al. _In vitro_-expanded antigen-specific regulatory T cells suppress autoimmune diabetes. J. Exp. Med.199, 1455–1465 (2004). ArticleCAS Google Scholar
Tarbell, K.V., Yamazaki, S., Olson, K., Toy, P. & Steinman, R.M. CD25+ CD4+ T cells, expanded with dendritic cells presenting a single autoantigenic peptide, suppress autoimmune diabetes. J. Exp. Med.199, 1467–1477 (2004). ArticleCAS Google Scholar
Thornton, A.M. & Shevach, E.M. CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J. Exp. Med.188, 287–296 (1998). ArticleCAS Google Scholar
Piccirillo, C.A. et al. CD4+CD25+ regulatory T cells can mediate suppressor function in the absence of transforming growth factor β1 production and responsiveness. J. Exp. Med.196, 237–246 (2002). ArticleCAS Google Scholar
Dieckmann, D., Plottner, H., Berchtold, S., Berger, T. & Schuler, G. Ex vivo isolation and characterization of CD4+CD25+ T cells with regulatory properties from human blood. J. Exp. Med.193, 1303–1310 (2001). ArticleCAS Google Scholar
Apostolou, I., Sarukhan, A., Klein, L. & von Boehmer, H. Origin of regulatory T cells with known specificity for antigen. Nat. Immunol.3, 756–763 (2002). ArticleCAS Google Scholar
Levings, M.K., Sangregorio, R. & Roncarolo, M.G. Human CD25+CD4+ T regulatory cells suppress naive and memory T cell proliferation and can be expanded in vitro without loss of function. J. Exp. Med.193, 1295–1302 (2001). ArticleCAS Google Scholar
Jonuleit, H. et al. Identification and functional characterization of human CD4+CD25+ T cells with regulatory properties isolated from peripheral blood. J. Exp. Med.193, 1285–1294 (2001). ArticleCAS Google Scholar
Levings, M.K. et al. Human CD25+CD4+ T suppressor cell clones produce transforming growth factor β, but not interleukin 10, and are distinct from type 1 T regulatory cells. J. Exp. Med.196, 1335–1346 (2002). ArticleCAS Google Scholar
Thornton, A.M. & Shevach, E.M. Suppressor effector function of CD4+CD25+ immunoregulatory T cells is antigen nonspecific. J. Immunol.164, 183–190 (2000). ArticleCAS Google Scholar
Asseman, C., Mauze, S., Leach, M.W., Coffman, R.L. & Powrie, F. An essential role for interleukin 10 in the function of regulatory T cells that inhibit intestinal inflammation. J. Exp. Med.190, 995–1004 (1999). ArticleCAS Google Scholar
Read, S., Malmstrom, V. & Powrie, F. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25+CD4+ regulatory cells that control intestinal inflammation. J. Exp. Med.192, 295–302 (2000). ArticleCAS Google Scholar
Kingsley, C.I., Karim, M., Bushell, A.R. & Wood, K.J. CD25+CD4+ regulatory T cells prevent graft rejection: CTLA-4- and IL-10-dependent immunoregulation of alloresponses. J. Immunol.168, 1080–1086 (2002). ArticleCAS Google Scholar
Belkaid, Y., Piccirillo, C.A., Mendez, S., Shevach, E.M. & Sacks, D.L. CD4+CD25+ regulatory T cells control Leishmania major persistence and immunity. Nature420, 502–507 (2002). ArticleCAS Google Scholar
Stoll, S., Delon, J., Brotz, T.M. & Germain, R.N. Dynamic imaging of T cell-dendritic cell interactions in lymph nodes. Science296, 1873–1876 (2002). Article Google Scholar
Mempel, T.R., Henrickson, S.E. & Von Andrian, U.H. T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases. Nature427, 154–159 (2004). ArticleCAS Google Scholar
Miller, M.J., Wei, S.H., Parker, I. & Cahalan, M.D. Two-photon imaging of lymphocyte motility and antigen response in intact lymph node. Science296, 1869–1873 (2002). ArticleCAS Google Scholar
Miller, M.J., Safrina, O., Parker, I. & Cahalan, M.D. Imaging the single cell dynamics of CD4+ T cell activation by dendritic cells in lymph nodes. J. Exp. Med.200, 847–856 (2004). ArticleCAS Google Scholar
Bousso, P. & Robey, E. Dynamics of CD8+ T cell priming by dendritic cells in intact lymph nodes. Nat. Immunol.4, 579–585 (2003). ArticleCAS Google Scholar
Itano, A.A. et al. Distinct dendritic cell populations sequentially present antigen to CD4 T cells and stimulate different aspects of cell-mediated immunity. Immunity19, 47–57 (2003). ArticleCAS Google Scholar
Itano, A.A. & Jenkins, M.K. Antigen presentation to naive CD4 T cells in the lymph node. Nat. Immunol.4, 733–739 (2003). ArticleCAS Google Scholar
Schmidt, D., Verdaguer, J., Averill, N. & Santamaria, P. A mechanism for the major histocompatibility complex-linked resistance to autoimmunity. J. Exp. Med.186, 1059–1075 (1997). ArticleCAS Google Scholar
Stetson, D.B. et al. Constitutive cytokine mRNAs mark natural killer (NK) and NK T cells poised for rapid effector function. J. Exp. Med.198, 1069–1076 (2003). ArticleCAS Google Scholar
Hara, M. et al. Transgenic mice with green fluorescent protein-labeled pancreatic β-cells. Am. J. Physiol. Endocrinol. Metab.284, E177–E183 (2003). ArticleCAS Google Scholar
Iezzi, G., Scotet, E., Scheidegger, D. & Lanzavecchia, A. The interplay between the duration of TCR and cytokine signaling determines T cell polarization. Eur. J. Immunol.29, 4092–4101 (1999). ArticleCAS Google Scholar
Gett, A.V., Sallusto, F., Lanzavecchia, A. & Geginat, J. T cell fitness determined by signal strength. Nat. Immunol.4, 355–360 (2003). ArticleCAS Google Scholar
Huppa, J.B., Gleimer, M., Sumen, C. & Davis, M.M. Continuous T cell receptor signaling required for synapse maintenance and full effector potential. Nat. Immunol.4, 749–755 (2003). ArticleCAS Google Scholar
Gunzer, M. et al. Antigen presentation in extracellular matrix: interactions of T cells with dendritic cells are dynamic, short lived, and sequential. Immunity13, 323–332 (2000). ArticleCAS Google Scholar
Gunzer, M. et al. A spectrum of biophysical interaction modes between T cells and different antigen-presenting cells during priming in 3-D collagen and in vivo. Blood104, 2801–2809 (2004). ArticleCAS Google Scholar
Hsieh, C.S. et al. Recognition of the peripheral self by naturally arising CD25+ CD4+ T cell receptors. Immunity21, 267–277 (2004). ArticleCAS Google Scholar
Steinman, R.M., Hawiger, D. & Nussenzweig, M.C. Tolerogenic dendritic cells. Annu. Rev. Immunol.21, 685–711 (2003). ArticleCAS Google Scholar
Scheinecker, C., McHugh, R., Shevach, E.M. & Germain, R.N. Constitutive presentation of a natural tissue autoantigen exclusively by dendritic cells in the draining lymph node. J. Exp. Med.196, 1079–1090 (2002). ArticleCAS Google Scholar
Serra, P. et al. CD40 ligation releases immature dendritic cells from the control of regulatory CD4+CD25+ T cells. Immunity19, 877–889 (2003). ArticleCAS Google Scholar
Sanderson, M.J. & Parker, I. Video-rate confocal microscopy. Methods Enzymol.360, 447–481 (2003). Article Google Scholar