Apoptotic neutrophils and T cells sequester chemokines during immune response resolution through modulation of CCR5 expression (original) (raw)
Majno, G & Joris, I. Cells, Tissues, and Disease: Principles of General Pathology (Oxford University Press, New York, 2004). Google Scholar
Serhan, C.N. Lipoxins and novel aspirin-triggered 15-epi-lipoxins (ATL): a jungle of cell-cell interactions or a therapeutic opportunity? Prostaglandins53, 107–137 (1997). ArticleCASPubMed Google Scholar
Levy, B.D., Clish, C.B., Schmidt, B., Gronert, K. & Serhan, C.N. Lipid mediator class switching during acute inflammation: signals in resolution. Nat. Immunol.2, 612–619 (2001). ArticleCASPubMed Google Scholar
Serhan, C.N. A search for endogenous mechanisms of anti-inflammation uncovers novel chemical mediators: missing links to resolution. Histochem. Cell Biol.122, 305–321 (2004). ArticleCASPubMed Google Scholar
Rossi, A.G. & Haslett, C. in Proinflammatory and Antiinflammatory Peptides (ed. Said, S.I.) 9–24 (Marcel Dekker, New York, 1998). Google Scholar
Savill, J., Dransfield, I., Gregory, C. & Haslett, C. A blast from the past: clearance of apoptotic cells regulates immune responses. Nat. Rev. Immunol.2, 965–975 (2002). ArticleCASPubMed Google Scholar
Gilroy, D.W. & Perretti, M. Aspirin and steroids: new mechanistic findings and avenues for drug discovery. Curr. Opin. Pharmacol.5, 405–411 (2005). ArticleCASPubMed Google Scholar
Godson, C. et al. Cutting edge: lipoxins rapidly stimulate nonphlogistic phagocytosis of apoptotic neutrophils by monocyte-derived macrophages. J. Immunol.164, 1663–1667 (2000). ArticleCASPubMed Google Scholar
Hanayama, R. et al. Identification of a factor that links apoptotic cells to phagocytes. Nature417, 182–187 (2002). ArticleCASPubMed Google Scholar
Byrne, A. & Reen, D.J. Lipopolysaccharide induces rapid production of IL-10 by monocytes in the presence of apoptotic neutrophils. J. Immunol.168, 1968–1977 (2002). ArticleCASPubMed Google Scholar
Savill, J., Hogg, N., Ren, Y. & Haslett, C. Thrombospondin cooperates with CD36 and the vitronectin receptor in macrophage recognition of neutrophils undergoing apoptosis. J. Clin. Invest.90, 1513–1522 (1992). ArticleCASPubMed CentralPubMed Google Scholar
Kim, S., Elkon, K.B. & Ma, X. Transcriptional suppression of interleukin-12 gene expression following phagocytosis of apoptotic cells. Immunity21, 643–653 (2004). ArticleCASPubMed Google Scholar
Mitchell, S. et al. Lipoxins, aspirin-triggered epi-lipoxins, lipoxin stable analogues, and the resolution of inflammation: stimulation of macrophage phagocytosis of apoptotic neutrophils in vivo. J. Am. Soc. Nephrol.13, 2497–2507 (2002). ArticleCASPubMed Google Scholar
Hanayama, R. et al. Autoimmune disease and impaired uptake of apoptotic cells in MFG-E8-deficient mice. Science304, 1147–1150 (2004). ArticleCASPubMed Google Scholar
Aprahamian, T. et al. Impaired clearance of apoptotic cells promotes synergy between atherogenesis and autoimmune disease. J. Exp. Med.199, 1121–1131 (2004). ArticleCASPubMed CentralPubMed Google Scholar
Potter, P.K., Cortes-Hernandez, J., Quartier, P., Botto, M. & Walport, M.J. Lupus-prone mice have an abnormal response to thioglycolate and an impaired clearance of apoptotic cells. J. Immunol.170, 3223–3232 (2003). ArticleCASPubMed Google Scholar
Bandeira-Melo, C. et al. Cyclooxygenase-2-derived prostaglandin E2 and lipoxin A4 accelerate resolution of allergic edema in _Angiostrongylus costaricensis_-infected rats: relationship with concurrent eosinophilia. J. Immunol.164, 1029–1036 (2000). ArticleCASPubMed Google Scholar
Arita, M. et al. Stereochemical assignment, antiinflammatory properties, and receptor for the ω-3 lipid mediator resolvin E1. J. Exp. Med.201, 713–722 (2005). ArticleCASPubMed CentralPubMed Google Scholar
Ariel, A. et al. The docosatriene protectin D1 Is produced by TH2 skewing and promotes human T cell apoptosis via lipid raft clustering. J. Biol. Chem.280, 43079–43086 (2005). ArticleCASPubMed Google Scholar
Bannenberg, G.L. et al. Molecular circuits of resolution: formation and actions of resolvins and protectins. J. Immunol.174, 4345–4355 (2005). ArticleCASPubMed Google Scholar
Wahl, S.M., Swisher, J., McCartney-Francis, N. & Chen, W. TGF-β: the perpetrator of immune suppression by regulatory T cells and suicidal T cells. J. Leukoc. Biol.76, 15–24 (2004). ArticleCASPubMed Google Scholar
Luster, A.D., Alon, R. & von Andrian, U.H. Immune cell migration in inflammation: present and future therapeutic targets. Nat. Immunol.6, 1182–1190 (2005). ArticleCASPubMed Google Scholar
Strieter, R.M., Belperio, J.A., Phillips, R.J. & Keane, M.P. CXC chemokines in angiogenesis of cancer. Semin. Cancer Biol.14, 195–200 (2004). ArticleCASPubMed Google Scholar
Oppermann, M. Chemokine receptor CCR5: insights into structure, function, and regulation. Cell. Signal.16, 1201–1210 (2004). ArticleCASPubMed Google Scholar
Alkhatib, G. et al. CC CKR5: a RANTES, MIP-1α, MIP-1β receptor as a fusion cofactor for macrophage-tropic HIV-1. Science272, 1955–1958 (1996). ArticleCASPubMed Google Scholar
Arur, S. et al. Annexin I is an endogenous ligand that mediates apoptotic cell engulfment. Dev. Cell4, 587–598 (2003). ArticleCASPubMed Google Scholar
Hachicha, M., Pouliot, M., Petasis, N.A. & Serhan, C.N. Lipoxin (LX)A4 and aspirin-triggered 15-epi-LXA4 inhibit tumor necrosis factor 1α-initiated neutrophil responses and trafficking: regulators of a cytokine-chemokine axis. J. Exp. Med.189, 1923–1930 (1999). ArticleCASPubMed CentralPubMed Google Scholar
Huynh, M.L., Fadok, V.A. & Henson, P.M. Phosphatidylserine-dependent ingestion of apoptotic cells promotes TGF-β1 secretion and the resolution of inflammation. J. Clin. Invest.109, 41–50 (2002). ArticleCASPubMed CentralPubMed Google Scholar
Green, D. & Kroemer, G. The central executioners of apoptosis: caspases or mitochondria? Trends Cell Biol.8, 267–271 (1998). ArticleCASPubMed Google Scholar
Rot, A. & von Andrian, U.H. Chemokines in innate and adaptive host defense: basic chemokinese grammar for immune cells. Annu. Rev. Immunol.22, 891–928 (2004). ArticleCASPubMed Google Scholar
Proost, P. et al. Cleavage by CD26/dipeptidyl peptidase IV converts the chemokine LD78β into a most efficient monocyte attractant and CCR1 agonist. Blood96, 1674–1680 (2000). CASPubMed Google Scholar
Guan, E., Wang, J., Roderiquez, G. & Norcross, M.A. Natural truncation of the chemokine MIP-1β/CCL4 affects receptor specificity but not anti-HIV-1 activity. J. Biol. Chem.277, 32348–32352 (2002). ArticleCASPubMed Google Scholar
Oravecz, T. et al. Regulation of the receptor specificity and function of the chemokine RANTES (regulated on activation, normal T cell expressed and secreted) by dipeptidyl peptidase IV (CD26)-mediated cleavage. J. Exp. Med.186, 1865–1872 (1997). ArticleCASPubMed CentralPubMed Google Scholar
Jamieson, T. et al. The chemokine receptor D6 limits the inflammatory response in vivo. Nat. Immunol.6, 403–411 (2005). ArticleCASPubMed Google Scholar
D'Amico, G. et al. Uncoupling of inflammatory chemokine receptors by IL-10: generation of functional decoys. Nat. Immunol.1, 387–391 (2000). ArticleCASPubMed Google Scholar
Chan, A., Magnus, T. & Gold, R. Phagocytosis of apoptotic inflammatory cells by microglia and modulation by different cytokines: mechanism for removal of apoptotic cells in the inflamed nervous system. Glia33, 87–95 (2001). ArticleCASPubMed Google Scholar
Tyner, J.W. et al. CCL5–CCR5 interaction provides antiapoptotic signals for macrophage survival during viral infection. Nat. Med.11, 1180–1187 (2005). ArticleCASPubMed CentralPubMed Google Scholar
Whyte, M.K., Meagher, L.C., MacDermot, J. & Haslett, C. Impairment of function in aging neutrophils is associated with apoptosis. J. Immunol.150, 5124–5134 (1993). CASPubMed Google Scholar
Ness, T.L. et al. CCR1 and CC chemokine ligand 5 interactions exacerbate innate immune responses during sepsis. J. Immunol.173, 6938–6948 (2004). ArticleCASPubMed Google Scholar
Heredia, A. et al. Rapamycin causes down-regulation of CCR5 and accumulation of anti-HIV β-chemokines: an approach to suppress R5 strains of HIV-1. Proc. Natl. Acad. Sci. USA100, 10411–10416 (2003). ArticleCASPubMed CentralPubMed Google Scholar
O'Shea, J.J., Ma, A. & Lipsky, P. Cytokines and autoimmunity. Nat. Rev. Immunol.2, 37–45 (2002). ArticleCASPubMed Google Scholar
Serhan, C.N. et al. Design of lipoxin A4 stable analogs that block transmigration and adhesion of human neutrophils. Biochemistry34, 14609–14615 (1995). ArticleCASPubMed Google Scholar
Brunetti, M. et al. Polymorphonuclear leukocyte apoptosis is inhibited by platelet-released mediators, role of TGFβ-1. Thromb. Haemost.84, 478–483 (2000). ArticleCASPubMed Google Scholar
Chen, W., Frank, M.E., Jin, W. & Wahl, S.M. TGF-β released by apoptotic T cells contributes to an immunosuppressive milieu. Immunity14, 715–725 (2001). ArticleCASPubMed Google Scholar
Hebert, M.J., Takano, T., Holthofer, H. & Brady, H.R. Sequential morphologic events during apoptosis of human neutrophils. Modulation by lipoxygenase-derived eicosanoids. J. Immunol.157, 3105–3115 (1996). CASPubMed Google Scholar
Serhan, C.N. et al. Anti-inflammatory actions of neuroprotectin D1/protectin D1 and its natural stereoisomers: assignments of dihydroxy-containing docosatrienes. J. Immunol.176, 1848–1859 (2006). ArticleCASPubMed Google Scholar
Wysocki, C.A. et al. Differential roles for CCR5 expression on donor T cells during graft-versus-host disease based on pretransplant conditioning. J. Immunol.173, 845–854 (2004). ArticleCASPubMed Google Scholar
Kuziel, W.A. et al. CCR5 deficiency is not protective in the early stages of atherogenesis in apoE knockout mice. Atherosclerosis167, 25–32 (2003). ArticleCASPubMed Google Scholar
Kumar, S. et al. SMM-chemokines: a class of unnatural synthetic molecules as chemical probes of chemokine receptor biology and leads for therapeutic development. Chem. Biol.13, 69–79 (2006). ArticleCASPubMed Google Scholar