CD19 is essential for B cell activation by promoting B cell receptor–antigen microcluster formation in response to membrane-bound ligand (original) (raw)

References

  1. Carrasco, Y. & Batista, F. B cell recognition of membrane-bound antigen: an exquisite way of sensing ligands. Curr. Opin. Immunol. 18, 286–291 (2006).
    Article CAS Google Scholar
  2. Carrasco, Y.R. & Batista, F.D. B cells acquire particulate antigen in a macrophage-rich area at the boundary between the follicle and the subcapsular sinus of the lymph node. Immunity 27, 160–171 (2007).
    Article CAS Google Scholar
  3. Reth, M. & Wienands, J. Initiation and processing of signals from the B cell antigen receptor. Annu. Rev. Immunol. 15, 453–479 (1997).
    Article CAS Google Scholar
  4. Kurosaki, T. Regulation of B cell fates by BCR signaling components. Curr. Opin. Immunol. 14, 341–347 (2002).
    Article CAS Google Scholar
  5. Lanzavecchia, A. Antigen-specific interaction between T and B cells. Nature 314, 537–539 (1985).
    Article CAS Google Scholar
  6. Reth, M. Antigen receptor tail clue. Nature 338, 383–384 (1989).
    Article CAS Google Scholar
  7. Schamel, W. & Reth, M. Monomeric and oligomeric complexes of the B cell antigen receptor. Immunity 13, 5–14 (2000).
    Article CAS Google Scholar
  8. Tolar, P., Sohn, H. & Pierce, S. The initiation of antigen-induced B cell antigen receptor signaling viewed in living cells by fluorescence resonance energy transfer. Nat. Immunol. 6, 1168–1176 (2005).
    Article CAS Google Scholar
  9. Fearon, D.T. & Carroll, M.C. Regulation of B lymphocyte responses to foreign and self-antigens by the CD19/CD21 complex. Annu. Rev. Immunol. 18, 393–422 (2000).
    Article CAS Google Scholar
  10. Carter, R. & Fearon, D. CD19: lowering the threshold for antigen receptor stimulation of B lymphocytes. Science 256, 105–107 (1992).
    Article CAS Google Scholar
  11. Engel, P. et al. Abnormal B lymphocyte development, activation, and differentiation in mice that lack or overexpress the CD19 signal transduction molecule. Immunity 3, 39–50 (1995).
    Article CAS Google Scholar
  12. Rickert, R., Rajewsky, K. & Roes, J. Impairment of T-cell-dependent B-cell responses and B-1 cell development in CD19-deficient mice. Nature 376, 352–355 (1995).
    Article CAS Google Scholar
  13. Ahearn, J.M. et al. Disruption of the Cr2 locus results in a reduction in B-1a cells and in an impaired B cell response to T-dependent antigen. Immunity 4, 251–262 (1996).
    Article CAS Google Scholar
  14. Sato, S., Miller, A., Howard, M. & Tedder, T. Regulation of B lymphocyte development and activation by the CD19/CD21/CD81/Leu 13 complex requires the cytoplasmic domain of CD19. J. Immunol. 159, 3278–3287 (1997).
    CAS PubMed Google Scholar
  15. Fujimoto, M., Bradney, A., Poe, J., Steeber, D. & Tedder, T. Modulation of B lymphocyte antigen receptor signal transduction by a CD19/CD22 regulatory loop. Immunity 11, 191–200 (1999).
    Article CAS Google Scholar
  16. Wu, J., Qin, D., Burton, G.F., Szakal, A.K. & Tew, J.G. Follicular dendritic cell-derived antigen and accessory activity in initiation of memory IgG responses in vitro. J. Immunol. 157, 3404–3411 (1996).
    CAS PubMed Google Scholar
  17. Wykes, M., Pombo, A., Jenkins, C. & MacPherson, G.G. Dendritic cells interact directly with naive B lymphocytes to transfer antigen and initiate class switching in a primary T-dependent response. J. Immunol. 161, 1313–1319 (1998).
    CAS PubMed Google Scholar
  18. Qi, H., Egen, J.G., Huang, A.Y. & Germain, R.N. Extrafollicular activation of lymph node B cells by antigen-bearing dendritic cells. Science 312, 1672–1676 (2006).
    Article CAS Google Scholar
  19. Phan, T.G., Grigorova, I., Okada, T. & Cyster, J.G. Subcapsular encounter and complement-dependent transport of immune complexes by lymph node B cells. Nat. Immunol. 8, 992–1000 (2007).
    Article CAS Google Scholar
  20. Fleire, S. et al. B cell ligand discrimination through a spreading and contraction response. Science 312, 738–741 (2006).
    Article CAS Google Scholar
  21. Carrasco, Y., Fleire, S., Cameron, T., Dustin, M. & Batista, F. LFA-1/ICAM-1 interaction lowers the threshold of B cell activation by facilitating B cell adhesion and synapse formation. Immunity 20, 589–599 (2004).
    Article CAS Google Scholar
  22. Carrasco, Y. & Batista, F. B-cell activation by membrane-bound antigens is facilitated by the interaction of VLA-4 with VCAM-1. EMBO J. 25, 889–899 (2006).
    Article CAS Google Scholar
  23. Monks, C.R., Freiberg, B.A., Kupfer, H., Sciaky, N. & Kupfer, A. Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 395, 82–86 (1998).
    Article CAS Google Scholar
  24. Grakoui, A. et al. The immunological synapse: a molecular machine controlling T cell activation. Science 285, 221–227 (1999).
    Article CAS Google Scholar
  25. Krummel, M.F., Sjaastad, M.D., Wulfing, C. & Davis, M.M. Differential clustering of CD4 and CD3ζ during T cell recognition. Science 289, 1349–1352 (2000).
    Article CAS Google Scholar
  26. Batista, F., Iber, D. & Neuberger, M. B cells acquire antigen from target cells after synapse formation. Nature 411, 489–494 (2001).
    Article CAS Google Scholar
  27. Lee, G.M., Zhang, F., Ishihara, A., McNeil, C.L. & Jacobson, K.A. Unconfined lateral diffusion and an estimate of pericellular matrix viscosity revealed by measuring the mobility of gold-tagged lipids. J. Cell Biol. 120, 25–35 (1993).
    Article CAS Google Scholar
  28. Fujiwara, T., Ritchie, K., Murakoshi, H., Jacobson, K. & Kusumi, A. Phospholipids undergo hop diffusion in compartmentalized cell membrane. J. Cell Biol. 157, 1071–1081 (2002).
    Article CAS Google Scholar
  29. Douglass, A. & Vale, R. Single-molecule microscopy reveals plasma membrane microdomains created by protein-protein networks that exclude or trap signaling molecules in T cells. Cell 121, 937–950 (2005).
    Article CAS Google Scholar
  30. Campi, G., Varma, R. & Dustin, M. Actin and agonist MHC-peptide complex-dependent T cell receptor microclusters as scaffolds for signaling. J. Exp. Med. 202, 1031–1036 (2005).
    Article CAS Google Scholar
  31. Yokosuka, T. et al. Newly generated T cell receptor microclusters initiate and sustain T cell activation by recruitment of Zap70 and SLP-76. Nat. Immunol. 6, 1253–1262 (2005).
    Article CAS Google Scholar
  32. Dransfield, I., Cabanas, C., Craig, A. & Hogg, N. Divalent cation regulation of the function of the leukocyte integrin LFA-1. J. Cell Biol. 116, 219–226 (1992).
    Article CAS Google Scholar
  33. Batista, F.D. & Neuberger, M.S. Affinity dependence of the B cell response to antigen: a threshold, a ceiling, and the importance of off-rate. Immunity 8, 751–759 (1998).
    Article CAS Google Scholar
  34. Williams, G.T., Peaker, C.J., Patel, K.J. & Neuberger, M.S. The α/β sheath and its cytoplasmic tyrosines are required for signaling by the B-cell antigen receptor but not for capping or for serine/threonine-kinase recruitment. Proc. Natl. Acad. Sci. USA 91, 474–478 (1994).
    Article CAS Google Scholar
  35. Varma, R., Campi, G., Yokosuka, T., Saito, T. & Dustin, M. T cell receptor-proximal signals are sustained in peripheral microclusters and terminated in the central supramolecular activation cluster. Immunity 25, 117–127 (2006).
    Article CAS Google Scholar
  36. Kim, K. & Reth, M. The B cell antigen receptor of class IgD induces a stronger and more prolonged protein tyrosine phosphorylation than that of class IgM. J. Exp. Med. 181, 1005–1014 (1995).
    Article CAS Google Scholar
  37. Bunnell, S. et al. T cell receptor ligation induces the formation of dynamically regulated signaling assemblies. J. Cell Biol. 158, 1263–1275 (2002).
    Article CAS Google Scholar
  38. Springer, T.A. Adhesion receptors of the immune system. Nature 346, 425–434 (1990).
    Article CAS Google Scholar
  39. van der Merwe, P.A. & Davis, S.J. Molecular interactions mediating T cell antigen recognition. Annu. Rev. Immunol. 21, 659–684 (2003).
    Article CAS Google Scholar
  40. Choudhuri, K., Wiseman, D., Brown, M.H., Gould, K. & van der Merwe, P.A. T-cell receptor triggering is critically dependent on the dimensions of its peptide-MHC ligand. Nature 436, 578–582 (2005).
    Article CAS Google Scholar
  41. Cyster, J.G. et al. Regulation of B-lymphocyte negative and positive selection by tyrosine phosphatase CD45. Nature 381, 325–328 (1996).
    Article CAS Google Scholar
  42. Pesando, J., Bouchard, L. & McMaster, B. CD19 is functionally and physically associated with surface immunoglobulin. J. Exp. Med. 170, 2159–2164 (1989).
    Article CAS Google Scholar
  43. Phee, H., Rodgers, W. & Coggeshall, K.M. Visualization of negative signaling in B cells by quantitative confocal microscopy. Mol. Cell. Biol. 21, 8615–8625 (2001).
    Article CAS Google Scholar
  44. Carter, R., Doody, G., Bolen, J. & Fearon, D. Membrane IgM-induced tyrosine phosphorylation of CD19 requires a CD19 domain that mediates association with components of the B cell antigen receptor complex. J. Immunol. 158, 3062–3069 (1997).
    CAS PubMed Google Scholar
  45. Lang, J. et al. B cells are exquisitely sensitive to central tolerance and receptor editing induced by ultralow affinity, membrane-bound antigen. J. Exp. Med. 184, 1685–1697 (1996).
    Article CAS Google Scholar
  46. Goodnow, C.C. et al. Altered immunoglobulin expression and functional silencing of self-reactive B lymphocytes in transgenic mice. Nature 334, 676–682 (1988).
    Article CAS Google Scholar
  47. Dintzis, H.M., Dintzis, R.Z. & Vogelstein, B. Molecular determinants of immunogenicity: the immunon model of immune response. Proc. Natl. Acad. Sci. USA 73, 3671–3675 (1976).
    Article CAS Google Scholar
  48. Russell, D.M. et al. Peripheral deletion of self-reactive B cells. Nature 354, 308–311 (1991).
    Article CAS Google Scholar
  49. Mee, P.J. et al. Greatly reduced efficiency of both positive and negative selection of thymocytes in CD45 tyrosine phosphatase-deficient mice. Eur. J. Immunol. 29, 2923–2933 (1999).
    Article CAS Google Scholar
  50. Molina, H. et al. Markedly impaired humoral immune response in mice deficient in complement receptors 1 and 2. Proc. Natl. Acad. Sci. USA 93, 3357–3361 (1996).
    Article CAS Google Scholar

Download references