CD19 is essential for B cell activation by promoting B cell receptor–antigen microcluster formation in response to membrane-bound ligand (original) (raw)
References
Carrasco, Y. & Batista, F. B cell recognition of membrane-bound antigen: an exquisite way of sensing ligands. Curr. Opin. Immunol.18, 286–291 (2006). ArticleCAS Google Scholar
Carrasco, Y.R. & Batista, F.D. B cells acquire particulate antigen in a macrophage-rich area at the boundary between the follicle and the subcapsular sinus of the lymph node. Immunity27, 160–171 (2007). ArticleCAS Google Scholar
Reth, M. & Wienands, J. Initiation and processing of signals from the B cell antigen receptor. Annu. Rev. Immunol.15, 453–479 (1997). ArticleCAS Google Scholar
Kurosaki, T. Regulation of B cell fates by BCR signaling components. Curr. Opin. Immunol.14, 341–347 (2002). ArticleCAS Google Scholar
Lanzavecchia, A. Antigen-specific interaction between T and B cells. Nature314, 537–539 (1985). ArticleCAS Google Scholar
Schamel, W. & Reth, M. Monomeric and oligomeric complexes of the B cell antigen receptor. Immunity13, 5–14 (2000). ArticleCAS Google Scholar
Tolar, P., Sohn, H. & Pierce, S. The initiation of antigen-induced B cell antigen receptor signaling viewed in living cells by fluorescence resonance energy transfer. Nat. Immunol.6, 1168–1176 (2005). ArticleCAS Google Scholar
Fearon, D.T. & Carroll, M.C. Regulation of B lymphocyte responses to foreign and self-antigens by the CD19/CD21 complex. Annu. Rev. Immunol.18, 393–422 (2000). ArticleCAS Google Scholar
Carter, R. & Fearon, D. CD19: lowering the threshold for antigen receptor stimulation of B lymphocytes. Science256, 105–107 (1992). ArticleCAS Google Scholar
Engel, P. et al. Abnormal B lymphocyte development, activation, and differentiation in mice that lack or overexpress the CD19 signal transduction molecule. Immunity3, 39–50 (1995). ArticleCAS Google Scholar
Rickert, R., Rajewsky, K. & Roes, J. Impairment of T-cell-dependent B-cell responses and B-1 cell development in CD19-deficient mice. Nature376, 352–355 (1995). ArticleCAS Google Scholar
Ahearn, J.M. et al. Disruption of the Cr2 locus results in a reduction in B-1a cells and in an impaired B cell response to T-dependent antigen. Immunity4, 251–262 (1996). ArticleCAS Google Scholar
Sato, S., Miller, A., Howard, M. & Tedder, T. Regulation of B lymphocyte development and activation by the CD19/CD21/CD81/Leu 13 complex requires the cytoplasmic domain of CD19. J. Immunol.159, 3278–3287 (1997). CASPubMed Google Scholar
Fujimoto, M., Bradney, A., Poe, J., Steeber, D. & Tedder, T. Modulation of B lymphocyte antigen receptor signal transduction by a CD19/CD22 regulatory loop. Immunity11, 191–200 (1999). ArticleCAS Google Scholar
Wu, J., Qin, D., Burton, G.F., Szakal, A.K. & Tew, J.G. Follicular dendritic cell-derived antigen and accessory activity in initiation of memory IgG responses in vitro. J. Immunol.157, 3404–3411 (1996). CASPubMed Google Scholar
Wykes, M., Pombo, A., Jenkins, C. & MacPherson, G.G. Dendritic cells interact directly with naive B lymphocytes to transfer antigen and initiate class switching in a primary T-dependent response. J. Immunol.161, 1313–1319 (1998). CASPubMed Google Scholar
Qi, H., Egen, J.G., Huang, A.Y. & Germain, R.N. Extrafollicular activation of lymph node B cells by antigen-bearing dendritic cells. Science312, 1672–1676 (2006). ArticleCAS Google Scholar
Phan, T.G., Grigorova, I., Okada, T. & Cyster, J.G. Subcapsular encounter and complement-dependent transport of immune complexes by lymph node B cells. Nat. Immunol.8, 992–1000 (2007). ArticleCAS Google Scholar
Fleire, S. et al. B cell ligand discrimination through a spreading and contraction response. Science312, 738–741 (2006). ArticleCAS Google Scholar
Carrasco, Y., Fleire, S., Cameron, T., Dustin, M. & Batista, F. LFA-1/ICAM-1 interaction lowers the threshold of B cell activation by facilitating B cell adhesion and synapse formation. Immunity20, 589–599 (2004). ArticleCAS Google Scholar
Carrasco, Y. & Batista, F. B-cell activation by membrane-bound antigens is facilitated by the interaction of VLA-4 with VCAM-1. EMBO J.25, 889–899 (2006). ArticleCAS Google Scholar
Monks, C.R., Freiberg, B.A., Kupfer, H., Sciaky, N. & Kupfer, A. Three-dimensional segregation of supramolecular activation clusters in T cells. Nature395, 82–86 (1998). ArticleCAS Google Scholar
Grakoui, A. et al. The immunological synapse: a molecular machine controlling T cell activation. Science285, 221–227 (1999). ArticleCAS Google Scholar
Krummel, M.F., Sjaastad, M.D., Wulfing, C. & Davis, M.M. Differential clustering of CD4 and CD3ζ during T cell recognition. Science289, 1349–1352 (2000). ArticleCAS Google Scholar
Batista, F., Iber, D. & Neuberger, M. B cells acquire antigen from target cells after synapse formation. Nature411, 489–494 (2001). ArticleCAS Google Scholar
Lee, G.M., Zhang, F., Ishihara, A., McNeil, C.L. & Jacobson, K.A. Unconfined lateral diffusion and an estimate of pericellular matrix viscosity revealed by measuring the mobility of gold-tagged lipids. J. Cell Biol.120, 25–35 (1993). ArticleCAS Google Scholar
Fujiwara, T., Ritchie, K., Murakoshi, H., Jacobson, K. & Kusumi, A. Phospholipids undergo hop diffusion in compartmentalized cell membrane. J. Cell Biol.157, 1071–1081 (2002). ArticleCAS Google Scholar
Douglass, A. & Vale, R. Single-molecule microscopy reveals plasma membrane microdomains created by protein-protein networks that exclude or trap signaling molecules in T cells. Cell121, 937–950 (2005). ArticleCAS Google Scholar
Campi, G., Varma, R. & Dustin, M. Actin and agonist MHC-peptide complex-dependent T cell receptor microclusters as scaffolds for signaling. J. Exp. Med.202, 1031–1036 (2005). ArticleCAS Google Scholar
Yokosuka, T. et al. Newly generated T cell receptor microclusters initiate and sustain T cell activation by recruitment of Zap70 and SLP-76. Nat. Immunol.6, 1253–1262 (2005). ArticleCAS Google Scholar
Dransfield, I., Cabanas, C., Craig, A. & Hogg, N. Divalent cation regulation of the function of the leukocyte integrin LFA-1. J. Cell Biol.116, 219–226 (1992). ArticleCAS Google Scholar
Batista, F.D. & Neuberger, M.S. Affinity dependence of the B cell response to antigen: a threshold, a ceiling, and the importance of off-rate. Immunity8, 751–759 (1998). ArticleCAS Google Scholar
Williams, G.T., Peaker, C.J., Patel, K.J. & Neuberger, M.S. The α/β sheath and its cytoplasmic tyrosines are required for signaling by the B-cell antigen receptor but not for capping or for serine/threonine-kinase recruitment. Proc. Natl. Acad. Sci. USA91, 474–478 (1994). ArticleCAS Google Scholar
Varma, R., Campi, G., Yokosuka, T., Saito, T. & Dustin, M. T cell receptor-proximal signals are sustained in peripheral microclusters and terminated in the central supramolecular activation cluster. Immunity25, 117–127 (2006). ArticleCAS Google Scholar
Kim, K. & Reth, M. The B cell antigen receptor of class IgD induces a stronger and more prolonged protein tyrosine phosphorylation than that of class IgM. J. Exp. Med.181, 1005–1014 (1995). ArticleCAS Google Scholar
Bunnell, S. et al. T cell receptor ligation induces the formation of dynamically regulated signaling assemblies. J. Cell Biol.158, 1263–1275 (2002). ArticleCAS Google Scholar
Springer, T.A. Adhesion receptors of the immune system. Nature346, 425–434 (1990). ArticleCAS Google Scholar
van der Merwe, P.A. & Davis, S.J. Molecular interactions mediating T cell antigen recognition. Annu. Rev. Immunol.21, 659–684 (2003). ArticleCAS Google Scholar
Choudhuri, K., Wiseman, D., Brown, M.H., Gould, K. & van der Merwe, P.A. T-cell receptor triggering is critically dependent on the dimensions of its peptide-MHC ligand. Nature436, 578–582 (2005). ArticleCAS Google Scholar
Cyster, J.G. et al. Regulation of B-lymphocyte negative and positive selection by tyrosine phosphatase CD45. Nature381, 325–328 (1996). ArticleCAS Google Scholar
Pesando, J., Bouchard, L. & McMaster, B. CD19 is functionally and physically associated with surface immunoglobulin. J. Exp. Med.170, 2159–2164 (1989). ArticleCAS Google Scholar
Phee, H., Rodgers, W. & Coggeshall, K.M. Visualization of negative signaling in B cells by quantitative confocal microscopy. Mol. Cell. Biol.21, 8615–8625 (2001). ArticleCAS Google Scholar
Carter, R., Doody, G., Bolen, J. & Fearon, D. Membrane IgM-induced tyrosine phosphorylation of CD19 requires a CD19 domain that mediates association with components of the B cell antigen receptor complex. J. Immunol.158, 3062–3069 (1997). CASPubMed Google Scholar
Lang, J. et al. B cells are exquisitely sensitive to central tolerance and receptor editing induced by ultralow affinity, membrane-bound antigen. J. Exp. Med.184, 1685–1697 (1996). ArticleCAS Google Scholar
Goodnow, C.C. et al. Altered immunoglobulin expression and functional silencing of self-reactive B lymphocytes in transgenic mice. Nature334, 676–682 (1988). ArticleCAS Google Scholar
Dintzis, H.M., Dintzis, R.Z. & Vogelstein, B. Molecular determinants of immunogenicity: the immunon model of immune response. Proc. Natl. Acad. Sci. USA73, 3671–3675 (1976). ArticleCAS Google Scholar
Russell, D.M. et al. Peripheral deletion of self-reactive B cells. Nature354, 308–311 (1991). ArticleCAS Google Scholar
Mee, P.J. et al. Greatly reduced efficiency of both positive and negative selection of thymocytes in CD45 tyrosine phosphatase-deficient mice. Eur. J. Immunol.29, 2923–2933 (1999). ArticleCAS Google Scholar
Molina, H. et al. Markedly impaired humoral immune response in mice deficient in complement receptors 1 and 2. Proc. Natl. Acad. Sci. USA93, 3357–3361 (1996). ArticleCAS Google Scholar