Of lineage and legacy: the development of mammalian hematopoietic stem cells (original) (raw)
Sabin, F. Studies on the origin of blood vessels and of red blood corpuscles as seen in the living blastoderm of chicks during the second day of incubation. Carnegie Inst. Wash. Pub. # 272. Contrib. Embryol.9, 214 (1920). Google Scholar
Murray, P. The development in vitro of the blood of the early chick embryo. Proc. Royal Soc. London11, 497–521 (1932). Google Scholar
Choi, K., Kennedy, M., Kazarov, A., Papadimitriou, J.C. & Keller, G. A common precursor for hematopoietic and endothelial cells. Development125, 725–732 (1998). ArticleCASPubMed Google Scholar
Fehling, H.J. et al. Tracking mesoderm induction and its specification to the hemangioblast during embryonic stem cell differentiation. Development130, 4217–4227 (2003). ArticleCASPubMed Google Scholar
Huber, T.L., Kouskoff, V., Fehling, H.J., Palis, J. & Keller, G. Haemangioblast commitment is initiated in the primitive streak of the mouse embryo. Nature432, 625–630 (2004). ArticleCASPubMed Google Scholar
Ferkowicz, M.J. & Yoder, M.C. Blood island formation: longstanding observations and modern interpretations. Exp. Hematol.33, 1041–1047 (2005). ArticlePubMed Google Scholar
Ueno, H. & Weissman, I.L. Clonal analysis of mouse development reveals a polyclonal origin for yolk sac blood islands. Dev. Cell11, 519–533 (2006). ArticleCASPubMed Google Scholar
Kinder, S.J. et al. The orderly allocation of mesodermal cells to the extraembryonic structures and the anteroposterior axis during gastrulation of the mouse embryo. Development126, 4691–4701 (1999). ArticleCASPubMed Google Scholar
Moore, M.A. & Metcalf, D. Ontogeny of the haemopoietic system: yolk sac origin of in vivo and in vitro colony forming cells in the developing mouse embryo. Br. J. Haematol.18, 279–296 (1970). ArticleCASPubMed Google Scholar
Weissman, I., Papaioannou, V. & Gardner, R. Differentiation of Normal and Neoplastic Hematopoietic Cells (Cold Spring Harbor Laboratory Press, New York, 1978). Google Scholar
Dieterlen-Lievre, F. On the origin of haemopoietic stem cells in the avian embryo: an experimental approach. J. Embryol. Exp. Morphol.33, 607–619 (1975). CASPubMed Google Scholar
Turpen, J.B., Knudson, C.M. & Hoefen, P.S. The early ontogeny of hematopoietic cells studied by grafting cytogenetically labeled tissue anlagen: localization of a prospective stem cell compartment. Dev. Biol.85, 99–112 (1981). ArticleCASPubMed Google Scholar
Cormier, F. & Dieterlen-Lievre, F. The wall of the chick embryo aorta harbours M-CFC, G-CFC, GM-CFC and BFU-E. Development102, 279–285 (1988). ArticleCASPubMed Google Scholar
Caprioli, A. et al. Hemangioblast commitment in the avian allantois: cellular and molecular aspects. Dev. Biol.238, 64–78 (2001). ArticleCASPubMed Google Scholar
Ciau-Uitz, A., Walmsley, M. & Patient, R. Distinct origins of adult and embryonic blood in Xenopus. Cell102, 787–796 (2000). ArticleCASPubMed Google Scholar
Walmsley, M., Ciau-Uitz, A. & Patient, R. Adult and embryonic blood and endothelium derive from distinct precursor populations which are differentially programmed by BMP in Xenopus. Development129, 5683–5695 (2002). ArticleCASPubMed Google Scholar
Walmsley, M., Cleaver, D. & Patient, R. FGF controls the timing of Scl, Lmo2 and Runx1 expression during embryonic blood development. Blood published online 17 October 2007 (doi:10.1182/blood-2007-03-081323). ArticlePubMedCAS Google Scholar
Turpen, J.B., Kelley, C.M., Mead, P.E. & Zon, L.I. Bipotential primitive-definitive hematopoietic progenitors in the vertebrate embryo. Immunity7, 325–334 (1997). ArticleCASPubMed Google Scholar
Lawson, K.A., Meneses, J.J. & Pedersen, R.A. Clonal analysis of epiblast fate during germ layer formation in the mouse embryo. Development113, 891–911 (1991). ArticleCASPubMed Google Scholar
Kanatsu, M. & Nishikawa, S.I. In vitro analysis of epiblast tissue potency for hematopoietic cell differentiation. Development122, 823–830 (1996). ArticleCASPubMed Google Scholar
Medvinsky, A. & Dzierzak, E. Definitive hematopoiesis is autonomously initiated by the AGM region. Cell86, 897–906 (1996). ArticleCASPubMed Google Scholar
Muller, A.M., Medvinsky, A., Strouboulis, J., Grosveld, F. & Dzierzak, E. Development of hematopoietic stem cell activity in the mouse embryo. Immunity1, 291–301 (1994). ArticleCASPubMed Google Scholar
de Bruijn, M.F., Speck, N.A., Peeters, M.C. & Dzierzak, E. Definitive hematopoietic stem cells first develop within the major arterial regions of the mouse embryo. EMBO J.19, 2465–2474 (2000). ArticleCASPubMedPubMed Central Google Scholar
Taoudi, S. & Medvinsky, A. Functional identification of the hematopoietic stem cell niche in the ventral domain of the embryonic dorsal aorta. Proc. Natl. Acad. Sci. USA104, 9399–9403 (2007). ArticleCASPubMedPubMed Central Google Scholar
North, T. et al. Runx1 expression marks long-term repopulating HSCs in the midgestation mouse embryo. Immunity16, 661–672 (2002). ArticleCASPubMed Google Scholar
de Bruijn, M. et al. HSCs localize to the endothelial layer in the midgestation mouse aorta. Immunity16, 673–683 (2002). ArticleCASPubMed Google Scholar
Gekas, C., Dieterlen-Lievre, F., Orkin, S.H. & Mikkola, H.K. Placenta is a niche for hematopoietic stem cells. Dev. Cell8, 365–375 (2005). ArticleCASPubMed Google Scholar
Ottersbach, K. & Dzierzak, E. The murine placenta contains hematopoietic stem cells within the vascular labyrinth region. Dev. Cell8, 377–387 (2005). ArticleCASPubMed Google Scholar
Johnson, G.R. & Moore, M.A. Role of stem cell migration in initiation of mouse foetal liver haemopoiesis. Nature258, 726–728 (1975). ArticleCASPubMed Google Scholar
Houssaint, E. Differentiation of the mouse hepatic primordium. II. Extrinsic origin of the haemopoietic cell line. Cell Differ.10, 243–252 (1981). ArticleCASPubMed Google Scholar
Kumaravelu, P. et al. Quantitative developmental anatomy of definitive haematopoietic stem cells/long-term repopulating units (HSC/RUs): role of the aorta-gonad-mesonephros (AGM) region and the yolk sac in colonisation of the mouse embryonic liver. Development129, 4891–4899 (2002). ArticleCASPubMed Google Scholar
Takeuchi, M., Sekiguchi, T., Hara, T., Kinoshita, T. & Miyajima, A. Cultivation of aorta-gonad-mesonephros-derived hematopoietic stem cells in the fetal liver microenvironment amplifies long-term repopulating activity and enhances engraftment to the bone marrow. Blood99, 1190–1196 (2002). ArticleCASPubMed Google Scholar
Ferkowicz, M.J. et al. CD41 expression defines the onset of primitive and definitive hematopoiesis in the murine embryo. Development130, 4393–4403 (2003). ArticleCASPubMed Google Scholar
Palis, J., Robertson, S., Kennedy, M., Wall, C. & Keller, G. Development of erythroid and myeloid progenitors in the yolk sac and embryo proper of the mouse. Development126, 5073–5084 (1999). ArticleCASPubMed Google Scholar
McGrath, K.E. & Palis, J. Hematopoiesis in the yolk sac: more than meets the eye. Exp. Hematol.33, 1021–1028 (2005). ArticlePubMed Google Scholar
Cumano, A., Dieterlen-Lievre, F. & Godin, I. Lymphoid potential, probed before circulation in mouse, is restricted to caudal intraembryonic splanchnopleura. Cell86, 907–916 (1996). ArticleCASPubMed Google Scholar
Corbel, C., Salaun, J., Belo-Diabangouaya, P. & Dieterlen-Lievre, F. Hematopoietic potential of the pre-fusion allantois. Dev. Biol.301, 478–488 (2007). ArticleCASPubMed Google Scholar
Zeigler, B.M. et al. The allantois and chorion, when isolated before circulation or chorio-allantoic fusion, have hematopoietic potential. Development133, 4183–4192 (2006). ArticleCASPubMed Google Scholar
Alvarez-Silva, M., Belo-Diabangouaya, P., Salaun, J. & Dieterlen-Lievre, F. Mouse placenta is a major hematopoietic organ. Development130, 5437–5444 (2003). ArticleCASPubMed Google Scholar
Medvinsky, A.L., Samoylina, N.L., Muller, A.M. & Dzierzak, E.A. An early pre-liver intraembryonic source of CFU-S in the developing mouse. Nature364, 64–67 (1993). ArticleCASPubMed Google Scholar
Rampon, C. & Huber, P. Multilineage hematopoietic progenitor activity generated autonomously in the mouse yolk sac: analysis using angiogenesis-defective embryos. Int. J. Dev. Biol.47, 273–280 (2003). CASPubMed Google Scholar
Lux, C.T. et al. All primitive and definitive hematopoietic progenitor cells emerging prior to E10 in the mouse embryo are products of the yolk sac. Blood published online 17 October 2007 (doi:10.1182/blood-2007-08-107086). ArticleCASPubMedPubMed Central Google Scholar
Yashiro, K., Shiratori, H. & Hamada, H. Haemodynamics determined by a genetic programme govern asymmetric development of the aortic arch. Nature450, 285–288 (2007). ArticleCASPubMed Google Scholar
Cumano, A., Ferraz, J.C., Klaine, M., Di Santo, J.P. & Godin, I. Intraembryonic, but not yolk sac hematopoietic precursors, isolated before circulation, provide long-term multilineage reconstitution. Immunity15, 477–485 (2001). ArticleCASPubMed Google Scholar
Tavian, M., Robin, C., Coulombel, L. & Peault, B. The human embryo, but not its yolk sac, generates lympho-myeloid stem cells: mapping multipotent hematopoietic cell fate in intraembryonic mesoderm. Immunity15, 487–495 (2001). ArticleCASPubMed Google Scholar
Yoder, M.C. et al. Characterization of definitive lymphohematopoietic stem cells in the day 9 murine yolk sac. Immunity7, 335–344 (1997). ArticleCASPubMed Google Scholar
Jaffredo, T., Bollerot, K., Sugiyama, D., Gautier, R. & Drevon, C. Tracing the hemangioblast during embryogenesis: developmental relationships between endothelial and hematopoietic cells. Int. J. Dev. Biol.49, 269–277 (2005). ArticleCASPubMed Google Scholar
Jaffredo, T., Gautier, R., Eichmann, A. & Dieterlen-Lievre, F. Intraaortic hemopoietic cells are derived from endothelial cells during ontogeny. Development125 (1998).
Jaffredo, T., Gautier, R., Brajeul, V. & Dieterlen-Lievre, F. Tracing the progeny of the aortic hemangioblast in the avian embryo. Dev. Biol.224, 204–214 (2000). ArticleCASPubMed Google Scholar
Sugiyama, D. et al. Erythropoiesis from acetyl LDL incorporating endothelial cells at the preliver stage. Blood101, 4733–4738 (2003). ArticleCASPubMed Google Scholar
Sanchez, M.J., Holmes, A., Miles, C. & Dzierzak, E. Characterization of the first definitive hematopoietic stem cells in the AGM and liver of the mouse embryo. Immunity5, 513–525 (1996). ArticleCASPubMed Google Scholar
Sanchez, M.J., Bockamp, E.O., Miller, J., Gambardella, L. & Green, A.R. Selective rescue of early haematopoietic progenitors in Scl−/− mice by expressing Scl under the control of a stem cell enhancer. Development128, 4815–4827 (2001). ArticleCASPubMed Google Scholar
Ling, K.W. et al. GATA-2 plays two functionally distinct roles during the ontogeny of hematopoietic stem cells. J. Exp. Med.200, 871–882 (2004). ArticleCASPubMedPubMed Central Google Scholar
Minegishi, N. et al. The mouse GATA-2 gene is expressed in the para-aortic splanchnopleura and aorta-gonads and mesonephros region. Blood93, 4196–4207 (1999). ArticleCASPubMed Google Scholar
Taoudi, S. et al. Progressive divergence of definitive haematopoietic stem cells from the endothelial compartment does not depend on contact with the foetal liver. Development132, 4179–4191 (2005). ArticleCASPubMed Google Scholar
Bertrand, J.Y. et al. Characterization of purified intraembryonic hematopoietic stem cells as a tool to define their site of origin. Proc. Natl. Acad. Sci. USA102, 134–139 (2005). ArticleCASPubMed Google Scholar
Oberlin, E., Tavian, M., Blazsek, B. & Peault, B. Blood-forming potential of vascular endothelium in the human embryo. Development129, 4147–4157 (2002). ArticleCASPubMed Google Scholar
Ody, C., Vaigot, P., Quere, P., Imhof, B.A. & Corbel, C. Glycoprotein IIb-IIIa is expressed on avian multilineage hematopoietic progenitor cells. Blood93, 2898–2906 (1999). ArticleCASPubMed Google Scholar
Durand, C. et al. Embryonic stromal clones reveal developmental regulators of definitive hematopoietic stem cells. Proc. Natl. Acad. Sci. USA published online 17 December 2007 (doi:10.1073/pnas.0706923105). ArticleCAS Google Scholar
Pardanaud, L. et al. Two distinct endothelial lineages in ontogeny, one of them related to hemopoiesis. Development122, 1363–1371 (1996). ArticleCASPubMed Google Scholar
Pouget, C., Gautier, R., Teillet, M.A. & Jaffredo, T. Somite-derived cells replace ventral aortic hemangioblasts and provide aortic smooth muscle cells of the trunk. Development133, 1013–1022 (2006). ArticleCASPubMed Google Scholar
Esner, M. et al. Smooth muscle of the dorsal aorta shares a common clonal origin with skeletal muscle of the myotome. Development133, 737–749 (2006). ArticleCASPubMed Google Scholar
Miura, Y. & Wilt, F.H. Tissue interaction and the formation of the first erythroblasts of the chick embryo. Dev. Biol.19, 201–211 (1969). ArticleCASPubMed Google Scholar
Pardanaud, L. & Dieterlen-Lievre, F. Emergence of endothelial and hemopoietic cells in the avian embryo. Anat. Embryol. (Berl.)187, 107–114 (1993). ArticleCAS Google Scholar
Wilt, F.H. Erythropoiesis in the chick embryo: the role of endoderm. Science147, 1588–1590 (1965). ArticleCASPubMed Google Scholar
Pardanaud, L. & Dieterlen-Lievre, F. Manipulation of the angiopoietic/hemangiopoietic commitment in the avian embryo. Development126, 617–627 (1999). ArticleCASPubMed Google Scholar
Belaoussoff, M., Farrington, S.M. & Baron, M.H. Hematopoietic induction and respecification of A-P identity by visceral endoderm signaling in the mouse embryo. Development125, 5009–5018 (1998). ArticleCASPubMed Google Scholar
Dyer, M.A., Farrington, S.M., Mohn, D., Munday, J.R. & Baron, M.H. Indian hedgehog activates hematopoiesis and vasculogenesis and can respecify prospective neurectodermal cell fate in the mouse embryo. Development128, 1717–1730 (2001). ArticleCASPubMed Google Scholar
Byrd, N. et al. Hedgehog is required for murine yolk sac angiogenesis. Development129, 361–372 (2002). ArticleCASPubMed Google Scholar
Gering, M. & Patient, R. Hedgehog signaling is required for adult blood stem cell formation in zebrafish embryos. Dev. Cell8, 389–400 (2005). ArticleCASPubMed Google Scholar
Faloon, P. et al. Basic fibroblast growth factor positively regulates hematopoietic development. Development127, 1931–1941 (2000). ArticleCASPubMed Google Scholar
Shalaby, F. et al. Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature376, 62–66 (1995). ArticleCASPubMed Google Scholar
Winnier, G., Blessing, M., Labosky, P.A. & Hogan, B.L. Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse. Genes Dev.9, 2105–2116 (1995). ArticleCASPubMed Google Scholar
Breier, G., Clauss, M. & Risau, W. Coordinate expression of vascular endothelial growth factor receptor-1 (flt-1) and its ligand suggests a paracrine regulation of murine vascular development. Dev. Dyn.204, 228–239 (1995). ArticleCASPubMed Google Scholar
Dumont, D.J. et al. Vascularization of the mouse embryo: a study of flk-1, tek, tie, and vascular endothelial growth factor expression during development. Dev. Dyn.203, 80–92 (1995). ArticleCASPubMed Google Scholar
Johansson. B.a.W., M. Evidence for involvement of activin A and bone morphogenetic protein 4 in mammalian mesoderm and hematopoietic development. Mol. Cell. Biol.15, 141–151 (1995). ArticleCASPubMedPubMed Central Google Scholar
Marshall, C.J., Kinnon, C. & Thrasher, A.J. Polarized expression of bone morphogenetic protein-4 in the human aorta-gonad-mesonephros region. Blood96, 1591–1593 (2000). ArticleCASPubMed Google Scholar
Sadlon, T.J., Lewis, I.D. & D'Andrea, R.J. BMP4: its role in development of the hematopoietic system and potential as a hematopoietic growth factor. Stem Cells22, 457–474 (2004). ArticleCASPubMed Google Scholar
Burns, C.E., Traver, D., Mayhall, E., Shepard, J.L. & Zon, L.I. Hematopoietic stem cell fate is established by the Notch-Runx pathway. Genes Dev.19, 2331–2342 (2005). ArticleCASPubMedPubMed Central Google Scholar
Kumano, K. et al. Notch1 but not Notch2 is essential for generating hematopoietic stem cells from endothelial cells. Immunity18, 699–711 (2003). ArticleCASPubMed Google Scholar
Robert-Moreno, A., Espinosa, L., de la Pompa, J.L. & Bigas, A. RBPjκ-dependent Notch function regulates Gata2 and is essential for the formation of intra-embryonic hematopoietic cells. Development132, 1117–1126 (2005). ArticleCASPubMed Google Scholar
Nakagawa, M. et al. AML1/Runx1 rescues Notch1-null mutation-induced deficiency of para-aortic splanchnopleural hematopoiesis. Blood108, 3329–3334 (2006). ArticleCASPubMed Google Scholar
Tsai, F.Y. et al. An early haematopoietic defect in mice lacking the transcription factor GATA-2. Nature371, 221–226 (1994). ArticleCASPubMed Google Scholar
North, T. et al. Cbfa is required for the formation of intraaortic hematopoietic clusters. Development126, 2563–2575 (1999). ArticleCASPubMed Google Scholar
Cai, Z.L. et al. Haploinsufficiency of AML1/CBFA2 affects the temporal and spatial generation of hematopoietic stem cells in the mouse embryo. Immunity13, 423–431 (2000). ArticleCASPubMed Google Scholar
Okuda, T., van Deursen, J., Hiebert, S.W., Grosveld, G. & Downing, J.R. AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell84, 321–330 (1996). ArticleCASPubMed Google Scholar
Wang, Q. et al. Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis. Proc. Natl. Acad. Sci. USA93, 3444–3449 (1996). ArticleCASPubMedPubMed Central Google Scholar
Okada, H. et al. AML1−/− embryos do not express certain hematopoiesis-related gene transcripts including those of the PU.1 gene. Oncogene17, 2287–2293 (1998). ArticleCASPubMed Google Scholar
McKercher, S.R. et al. Targeted disruption of the PU.1 gene results in multiple hematopoietic abnormalities. EMBO J.15, 5647–5658 (1996). ArticleCASPubMedPubMed Central Google Scholar
Scott, E.W., Simon, M.C., Anastasi, J. & Singh, H. Requirement of transcription factor PU.1 in the development of multiple hematopoietic lineages. Science265, 1573–1577 (1994). ArticleCASPubMed Google Scholar
Huang, G. et al. PU.1 is a major downstream target of AML1 (RUNX1) in adult mouse hematopoiesis. Nat. Genet. advance online publication 11 November 2007 (doi: 10.1038/ng.2007.7). ArticlePubMedCAS Google Scholar
Robin, C. et al. An unexpected role for IL-3 in the embryonic development of hematopoietic stem cells. Dev. Cell11, 171–180 (2006). ArticleCASPubMed Google Scholar
Gottgens, B. et al. Establishing the transcriptional programme for blood: the SCL stem cell enhancer is regulated by a multiprotein complex containing Ets and GATA factors. EMBO J.21, 3039–3050 (2002). ArticleCASPubMedPubMed Central Google Scholar
Nottingham, W.T. et al. Runx1-mediated hematopoietic stem cell emergence is controlled by a Gata/Ets/SCL-regulated enhancer. Blood110, 4188–4197 (2007). ArticleCASPubMedPubMed Central Google Scholar
Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell126, 663–676 (2006). ArticleCASPubMed Google Scholar
Kissa, K. et al. Live imaging of emerging hematopoietic stem cells and early thymus colonization. Blood published online 12 October 2007 (doi:10.1182/blood-2007-07-099499). ArticlePubMedCAS Google Scholar
Bertrand, J.Y. et al. Fetal spleen stroma drives macrophage commitment. Development133, 3619–3628 (2006). ArticleCASPubMed Google Scholar
Yokota, T. et al. Tracing the first waves of lymphopoiesis in mice. Development133, 2041–2051 (2006). ArticleCASPubMed Google Scholar
Jotereau, F.V. & Le Douarin, N.M. Demonstration of a cyclic renewal of the lymphocyte precursor cells in the quail thymus during embryonic and perinatal life. J. Immunol.129, 1869–1877 (1982). CASPubMed Google Scholar
van Ewijk, W., Hollander, G., Terhorst, C. & Wang, B. Stepwise development of thymic microenvironments in vivo is regulated by thymocyte subsets. Development127, 1583–1591 (2000). ArticleCASPubMed Google Scholar
Xie, H., Ye, M., Feng, R. & Graf, T. Stepwise reprogramming of B cells into macrophages. Cell117, 663–676 (2004). ArticleCASPubMed Google Scholar
Mikkola, H.K., Fujiwara, Y., Schlaeger, T.M., Traver, D. & Orkin, S.H. Expression of CD41 marks the initiation of definitive hematopoiesis in the mouse embryo. Blood101, 508–516 (2003). ArticleCASPubMed Google Scholar
Emambokus, N.R. & Frampton, J. The glycoprotein IIb molecule is expressed on early murine hematopoietic progenitors and regulates their numbers in sites of hematopoiesis. Immunity19, 33–45 (2003). ArticleCASPubMed Google Scholar
Gothert, J.R. et al. In vivo fate tracing studies using the SCL stem cell enhancer: embryonic hematopoietic stem cells significantly contribute to adult hematopoiesis. Blood105, 2724–2732 (2004). Google Scholar
Samokhvalov, I.M., Samokhvalova, N.I. & Nishikawa, S. Cell tracing shows the contribution of the yolk sac to adult haematopoiesis. Nature446, 1056–1061 (2007). ArticleCASPubMed Google Scholar