AID mutant analyses indicate requirement for class-switch-specific cofactors (original) (raw)

References

  1. Honjo, T., Kinoshita, K. & Muramatsu, M. Molecular mechanism of class switch recombination: linkage with somatic hypermutation. Annu. Rev. Immunol. 20, 165–196 (2002).
    Article CAS Google Scholar
  2. Kinoshita, K. & Honjo, T. Linking class-switch recombination with somatic hypermutation. Nat. Rev. Mol. Cell Biol. 2, 493–503 (2001).
    Article CAS Google Scholar
  3. Reynaud, C.A., Aoufouchi, S., Faili, A. & Weill, J.C. What role for AID: mutator, or assembler of the immunoglobulin mutasome? Nat. Immunol. 4, 631–638 (2003).
    Article CAS Google Scholar
  4. Muramatsu, M. et al. Specific expression of activation-induced cytidine deaminase (AID), a novel member of the RNA-editing deaminase family in germinal center B cells. J. Biol. Chem. 274, 18470–18476 (1999).
    Article CAS Google Scholar
  5. Muramatsu, M. et al. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102, 553–563 (2000).
    Article CAS Google Scholar
  6. Revy, P. et al. Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the Hyper-IgM syndrome (HIGM2). Cell 201, 565–575 (2000).
    Article Google Scholar
  7. Okazaki, I.M., Kinoshita, K., Muramatsu, M., Yoshikawa, K. & Honjo, T. The AID enzyme induces class switch recombination in fibroblasts. Nature 416, 340–345 (2002).
    Article CAS Google Scholar
  8. Yoshikawa, K. et al. AID is a hypermutator of actively-transcribed genes in fibroblasts. Science 296, 2033–2036 (2002).
    Article CAS Google Scholar
  9. Arakawa, H., Hauschild, J. & Buerstedde, J.M. Requirement of the activation-induced deaminase (AID) gene for immunoglobulin gene conversion. Science 295, 1301–1306 (2002).
    Article CAS Google Scholar
  10. Harris, R.S., Sale, J.E., Petersen-Mahrt, S.K. & Neuberger, M.S. AID is essential for immunoglobulin V gene conversion in a cultured B cell line. Curr. Biol. 12, 435–438 (2002).
    Article CAS Google Scholar
  11. Muto, T., Muramatsu, M., Taniwaki, M., Kinoshita, K. & Honjo, T. Isolation, tissue distribution, and chromosomal localization of the human activation-induced cytidine deaminase (AID) gene. Genomics 68, 85–88 (2000).
    Article CAS Google Scholar
  12. Doi, T., Kinoshita, K., Ikegawa, M., Muramatsu, M. & Honjo, T. De novo protein synthesis is required for the activation-induced cytidine deaminase function in class-switch recombination. Proc. Natl. Acad. Sci. USA 100, 2634–2638 (2003).
    Article CAS Google Scholar
  13. Petersen-Mahrt, S.K., Harris, R.S. & Neuberger, M.S. AID mutates E. coli suggesting a DNA deamination mechanism for antibody diversification. Nature 418, 99–103 (2002).
    Article CAS Google Scholar
  14. Ramiro, A.R., Stavropoulos, P., Jankovic, M. & Nussenzweig, M.C. Transcription enhances AID-mediated cytidine deamination by exposing single-stranded DNA on the nontemplate strand. Nat. Immunol. 4, 452–456 (2003).
    Article CAS Google Scholar
  15. Dickerson, S.K., Market, E., Besmer, E. & Papavasiliou, F.N. AID mediates hypermutation by deaminating single stranded DNA. J. Exp. Med. 197, 1291–1296 (2003).
    Article CAS Google Scholar
  16. Chaudhuri, J. et al. Transcription-targeted DNA deamination by the AID antibody diversification enzyme. Nature 422, 726–730 (2003).
    Article CAS Google Scholar
  17. Bransteitter, R., Pham, P., Scharff. M.D. & Goodman, M.F. Activation-induced cytidine deaminase deaminates deoxycytidine on single-stranded DNA but requires the action of RNase. Proc. Natl. Acad. Sci. USA 100, 4102–4107 (2003).
    Article CAS Google Scholar
  18. Di Noia, J. & Neuberger, M.S. Altering the pathway of immunoglobulin hypermutation by inhibiting uracil-DNA glycosylate. Nature 419, 43–48 (2002).
    Article CAS Google Scholar
  19. Rada, C. et al. Immunoglobulin isotype switching in inhibited and somatic hypermutation perturbed in UNG-deficient mice. Curr. Biol. 12, 1748–1755 (2002).
    Article CAS Google Scholar
  20. Azuma, T., Motoyama, N., Fields, L.E. & Loh, D.Y. Mutations of the chloramphenicol acetyl transferase transgene driven by the immunoglobulin promoter and intron enhancer. Int. Immunol. 5, 121–130 (1993).
    Article CAS Google Scholar
  21. Yelamos, J. et al. Targeting of non-Ig sequences in place of the V segment by somatic hypermutation. Nature 376, 225–229 (1995).
    Article CAS Google Scholar
  22. Kinoshita, K., Tashiro, J., Tomita, S., Lee, C.G. & Honjo, T. Target specificity of immunoglobulin class switch recombination is not determined by nucleotide sequences of S regions. Immunity 9, 849–858 (1998).
    Article CAS Google Scholar
  23. Tashiro, J., Kinoshita, K. & Honjo, T. Palindromic but not G-rich sequences are targets of class switch recombination. Int. Immunol. 13, 495–505 (2001).
    Article CAS Google Scholar
  24. Shinkura, R. et al. The influence of transcriptional orientation on endogenous switch region function. Nat. Immunol. 4, 435–441 (2003).
    Article CAS Google Scholar
  25. Reaban, M.E., Lebowitz, J. & Griffin, J.A. Transcription induces the formation of a stable RNA.DNA hybrid in the immunoglobulin α switch region. J. Biol. Chem. 269, 21850–21857 (1994).
    CAS PubMed Google Scholar
  26. Mussmann, R., Courtet, M., Schwager, J. & Du Pasquier, L. Microsites for immunoglobulin switch recombination beakpoints from Xenopus to mammals. Eur. J. Immunol. 27, 1610–1619 (1997).
    Article Google Scholar
  27. Tian, M. & Alt, F.W. Transcription-induced cleavage of immunoglobulin switch regions by nucleotide excision repair nucleases in vitro. J. Biol. Chem. 275, 24163–24172 (2000).
    Article CAS Google Scholar
  28. Mizuta, R. et al. Molecular visualization of immunoglobulin switch region RNA/DNA complex by atomic force microscope. J. Biol. Chem. 278, 4431–4434 (2003).
    Article CAS Google Scholar
  29. Yu, K., Chedin, F., Hsieh, C-L., Wilson, T.E. & Lieber, M.R. R-loops at immunoglobulin class switch regions in the chromosomes of stimulated B cells. Nat. Immunol. 4, 442–451 (2003).
    Article CAS Google Scholar
  30. Faili, A. et al. AID-dependent somatic hypermutation occurs as a DNA single-strand event in the BL2 cell line. Nat. Immunol. 3, 815–821 (2002).
    Article CAS Google Scholar
  31. Peterson, S. et al. AID is required to initiate Nbs1/γ-H2AX focus formation and mutations at sites of class switching. Nature 414, 660–665 (2001).
    Article Google Scholar
  32. Chen, X., Kinoshita, K. & Honjo, T. Variable deletion and duplication at recombination junction ends: implication for staggered double-strand cleavage in class-switch recombination. Proc. Natl. Acad. Sci. USA 98, 13860–13865 (2001).
    Article CAS Google Scholar
  33. Minegishi, Y. et al. Mutations in activation-induced cytidine deaminase in patients with hyper IgM syndrome. Clin. Immunol. 97, 203–201 (2000).
    Article CAS Google Scholar
  34. Zhu, Y. et al. Type two hyper-IgM syndrome caused by mutation in activation-induced cytidine deaminase. J. Med. Dent. Sci. 50, 41–46 (2003).
    PubMed Google Scholar
  35. Navaratnam, N. et al. Escherichia coli cytidine deaminase provides a molecular model for Apo RNA editing and a mechanism for RNA substrate recognition. J. Mol. Biol. 275, 695–714 (1998).
    Article CAS Google Scholar
  36. Fagarasan, S., Kinoshita, K., Muramatsu, M., Ikuta, K. & Honjo, T. In situ class switching and differentiation to IgA-producing cells in the gut lamina propria. Nature 413, 639–643 (2001).
    Article CAS Google Scholar
  37. Kinoshita, K., Harigai, M., Fagarasan, S., Muramatsu, M. & Honjo, T. A hallmark of active class switch recombination: Transcript directed by I promoters on looped-out circular DNAs. Proc. Natl. Acad. Sci. USA 98, 12620–12633 (2001).
    Article CAS Google Scholar
  38. Martin, A. et al. Activation-induced cytidine deaminase turns on somatic hypermutation in hybridomas. Nature 415, 802–806 (2002).
    Article CAS Google Scholar
  39. Flajnick, M.F. Comparative analyses of immunoglobulin genes: surprise and portents. Nature Rev. Imuunol. 2, 688–698 (2002).
    Article Google Scholar
  40. Mehta, A., Kinter, M.T., Sherman, N.E. & Driscoll, D.M. Molecular cloning of apobec-1 complementation factor, a novel RNA-binding protein involved in the editing of apolipoprotein B mRNA. Mol. Cell. Biol. 20, 1846–1854 (2000).
    Article CAS Google Scholar
  41. Henderson, J.O., Blanc, V. & Davidson N.O. Isolation, characterization and developmental regulation of the human apobec-1 complementation factor (ACF) gene. Biochim. Biophys. Acta 1522, 22–30 (2001).
    Article CAS Google Scholar
  42. Harris, R.S., Petersen-Mahrt, S.K. & Neuberger, M.S. RNA editing enzyme APOBEC1 and some of its homologs can act as DNA mutators. Mol. Cell 10, 1247–1253 (2002).
    Article CAS Google Scholar
  43. Pham, P., Bransteitter, R., Petruska, J. & Goodman, M.F. Processive AID-catalysed cytosine deamination on single-stranded DNA simulates somatic hypermutation. Nature 424, 103–107 (2003).
    Article CAS Google Scholar
  44. Maas, S., Rich, A. Changing genetic information through RNA editing. Bioessays 22, 790–802 (2000).
    Article CAS Google Scholar
  45. Gallo, A., Keegan, L.P., Ring, G.M. & O'Connell, M.A. An ADAR that edits transcripts encoding ion channel subunits functions as a dimer. EMBO J. 22, 3421–3430 (2003).
    Article CAS Google Scholar
  46. Cho, D.S, Yang, W., Lee, J.T., Shiekhattar, R., Murray, J.M. & Nishikura, K. Requirement of dimerization for RNA editing activity of adenosine deaminases acting on RNA. J. Biol. Chem. 278, 17093–17102 (2003).
    Article CAS Google Scholar
  47. Sowden, M.P. et al. The editosome for cytidine to uridine mRNA editing has a native complexity of 27S: identification of intracellular domains containing active and inactive editing factors. J. Cell Sci. 115, 1027–1039 (2002).
    CAS PubMed Google Scholar

Download references