The actin cytoskeleton of kidney podocytes is a direct target of the antiproteinuric effect of cyclosporine A (original) (raw)
Somlo, S. & Mundel, P. Getting a foothold in nephrotic syndrome. Nat. Genet.24, 333–335 (2000). ArticleCAS Google Scholar
Tryggvason, K., Patrakka, J. & Wartiovaara, J. Hereditary proteinuria syndromes and mechanisms of proteinuria. N. Engl. J. Med.354, 1387–1401 (2006). ArticleCAS Google Scholar
Tryggvason, K., Pikkarainen, T. & Patrakka, J. Nck links nephrin to actin in kidney podocytes. Cell125, 221–224 (2006). ArticleCAS Google Scholar
Faul, C., Asanuma, K., Yanagida-Asanuma, E., Kim, K. & Mundel, P. Actin up: regulation of podocyte structure and function by components of the actin cytoskeleton. Trends Cell Biol.17, 428–437 (2007). ArticleCAS Google Scholar
Mundel, P. et al. Synaptopodin: an actin-associated protein in telencephalic dendrites and renal podocytes. J. Cell Biol.139, 193–204 (1997). ArticleCAS Google Scholar
Asanuma, K. et al. Synaptopodin regulates the actin-bundling activity of α-actinin in an isoform-specific manner. J. Clin. Invest.115, 1188–1198 (2005). ArticleCAS Google Scholar
Huber, T.B. et al. Bigenic mouse models of focal segmental glomerulosclerosis involving pairwise interaction of CD2AP, Fyn and synaptopodin. J. Clin. Invest.116, 1337–1345 (2006). ArticleCAS Google Scholar
Asanuma, K. et al. Synaptopodin orchestrates actin organization and cell motility via regulation of RhoA signalling. Nat. Cell Biol.8, 485–491 (2006). ArticleCAS Google Scholar
Yanagida-Asanuma, E. et al. Synaptopodin protects against proteinuria by disrupting Cdc42-IRSp53-Mena signaling complexes in kidney podocytes. Am. J. Pathol.171, 415–427 (2007). ArticleCAS Google Scholar
Aramburu, J., Heitman, J. & Crabtree, G.R. Calcineurin: a central controller of signalling in eukaryotes. EMBO Rep.5, 343–348 (2004). ArticleCAS Google Scholar
Crabtree, G.R. & Olson, E.N. NFAT signaling: choreographing the social lives of cells. Cell109 Suppl, S67–S79 (2002). ArticleCAS Google Scholar
Heit, J.J. et al. Calcineurin-NFAT signalling regulates pancreatic beta cell growth and function. Nature443, 345–349 (2006). ArticleCAS Google Scholar
Horsley, V., Aliprantis, A.O., Polak, L., Glimcher, L.H. & Fuchs, E. NFATc1 balances quiescence and proliferation of skin stem cells. Cell132, 299–310 (2008). ArticleCAS Google Scholar
Koga, T. et al. NFAT and Osterix cooperatively regulate bone formation. Nat. Med.11, 880–885 (2005). ArticleCAS Google Scholar
Meyrier, A. Treatment of focal segmental glomerulosclerosis. Expert Opin. Pharmacother.6, 1539–1549 (2005). ArticleCAS Google Scholar
Charbit, M. et al. Cyclosporin therapy in patients with Alport syndrome. Pediatr. Nephrol.22, 57–63 (2007). Article Google Scholar
Chen, D. et al. Cyclosporine A slows the progressive renal disease of alport syndrome (X-linked hereditary nephritis): results from a canine model. J. Am. Soc. Nephrol.14, 690–698 (2003). ArticleCAS Google Scholar
Reiser, J. et al. Induction of B7–1 in podocytes is associated with nephrotic syndrome. J. Clin. Invest.113, 1390–1397 (2004). ArticleCAS Google Scholar
Fu, H., Subramanian, R.R. & Masters, S.C. 14-3-3 proteins: structure, function and regulation. Annu. Rev. Pharmacol. Toxicol.40, 617–647 (2000). ArticleCAS Google Scholar
Yaffe, M.B. et al. The structural basis for 14-3-3–phosphopeptide binding specificity. Cell91, 961–971 (1997). ArticleCAS Google Scholar
Faul, C., Dhume, A., Schecter, A.D. & Mundel, P. Protein kinase A, Ca2+-calmodulin–dependent kinase II and calcineurin regulate the intracellular trafficking of myopodin between the Z-disc and the nucleus of cardiac myocytes. Mol. Cell. Biol.27, 8215–8227 (2007). ArticleCAS Google Scholar
O'Keefe, S.J., Tamura, J., Kincaid, R.L., Tocci, M.J. & O'Neill, E.A. FK-506– and CsA-sensitive activation of the interleukin-2 promoter by calcineurin. Nature357, 692–694 (1992). ArticleCAS Google Scholar
Yaffe, M.B. How do 14-3-3 proteins work? Gatekeeper phosphorylation and the molecular anvil hypothesis. FEBS Lett.513, 53–57 (2002). ArticleCAS Google Scholar
Faul, C. et al. Promotion of importin α-mediated nuclear import by the phosphorylation-dependent binding of cargo protein to 14-3-3. J. Cell Biol.169, 415–424 (2005). ArticleCAS Google Scholar
Muslin, A.J., Tanner, J.W., Allen, P.M. & Shaw, A.S. Interaction of 14-3-3 with signaling proteins is mediated by the recognition of phosphoserine. Cell84, 889–897 (1996). ArticleCAS Google Scholar
Dougherty, M.K. & Morrison, D.K. Unlocking the code of 14-3-3. J. Cell Sci.117, 1875–1884 (2004). ArticleCAS Google Scholar
Masters, S.C. & Fu, H. 14-3-3 proteins mediate an essential anti-apoptotic signal. J. Biol. Chem.276, 45193–45200 (2001). ArticleCAS Google Scholar
Reiser, J. et al. Podocyte migration during nephrotic syndrome requires a coordinated interplay between cathepsin L and α3 integrin. J. Biol. Chem.279, 34827–34832 (2004). ArticleCAS Google Scholar
Sever, S. et al. Proteolytic processing of dynamin by cytoplasmic cathepsin L is a mechanism for proteinuric kidney disease. J. Clin. Invest.117, 2095–2104 (2007). ArticleCAS Google Scholar
Lohmuller, T. et al. Toward computer-based cleavage site prediction of cysteine endopeptidases. Biol. Chem.384, 899–909 (2003). Article Google Scholar
Cotelle, V. et al. 14-3-3s regulate global cleavage of their diverse binding partners in sugar-starved Arabidopsis cells. EMBO J.19, 2869–2876 (2000). ArticleCAS Google Scholar
Baricos, W.H. et al. Evidence suggesting a role for cathepsin L in an experimental model of glomerulonephritis. Arch. Biochem. Biophys.288, 468–472 (1991). ArticleCAS Google Scholar
Bosma, G.C., Custer, R.P. & Bosma, M.J. A severe combined immunodeficiency mutation in the mouse. Nature301, 527–530 (1983). ArticleCAS Google Scholar
Schwarz, K. et al. Podocin, a raft-associated component of the glomerular slit diaphragm, interacts with CD2AP and nephrin. J. Clin. Invest.108, 1621–1629 (2001). ArticleCAS Google Scholar
Kim, B.S. et al. Impact of cyclosporin on podocyte ZO-1 expression in puromycin aminonucleoside nephrosis rats. Yonsei Med. J.46, 141–148 (2005). Article Google Scholar
Shigehara, T. et al. Inducible podocyte-specific gene expression in transgenic mice. J. Am. Soc. Nephrol.14, 1998–2003 (2003). CASPubMed Google Scholar
Zheng, W. et al. Cellular stability of serotonin N-acetyltransferase conferred by phosphonodifluoromethylene alanine (Pfa) substitution for Ser-205. J. Biol. Chem.280, 10462–10467 (2005). ArticleCAS Google Scholar
Kuwahara, K. et al. TRPC6 fulfills a calcineurin signaling circuit during pathologic cardiac remodeling. J. Clin. Invest.116, 3114–3126 (2006). ArticleCAS Google Scholar
Winn, M.P. et al. A mutation in the TRPC6 cation channel causes familial focal segmental glomerulosclerosis. Science308, 1801–1804 (2005). ArticleCAS Google Scholar
Reiser, J. et al. TRPC6 is a glomerular slit diaphragm–associated channel required for normal renal function. Nat. Genet.37, 739–744 (2005). ArticleCAS Google Scholar
Moller, C.C. et al. Induction of TRPC6 channel in acquired forms of proteinuric kidney disease. J. Am. Soc. Nephrol.18, 29–36 (2007). ArticleCAS Google Scholar
Halloran, P.F. Immunosuppressive drugs for kidney transplantation. N. Engl. J. Med.351, 2715–2729 (2004). ArticleCAS Google Scholar
Goulet, B. et al. A cathepsin L isoform that is devoid of a signal peptide localizes to the nucleus in S phase and processes the CDP/Cux transcription factor. Mol. Cell14, 207–219 (2004). ArticleCAS Google Scholar