Cyclophilin D deficiency attenuates mitochondrial and neuronal perturbation and ameliorates learning and memory in Alzheimer's disease (original) (raw)
Mauren, I., Zierz, S. & Moller, H.J. A selective defect of cytochrome c oxidase is present in brain of Alzheimer disease patients. Neurobiol. Aging21, 455–462 (2000). Article Google Scholar
Blass, J.P. The mitochondrial spiral. An adequate cause of dementia in the Alzheimer's syndrome. Ann. NY Acad. Sci.924, 170–183 (2000). ArticlePubMedCAS Google Scholar
Sheehan, J.P. et al. Calcium homeostasis and reactive oxygen species production in cells transformed by mitochondria from individuals with sporadic Alzheimer's disease. J. Neurosci.17, 4612–4622 (1997). ArticlePubMedPubMed CentralCAS Google Scholar
Cardoso, S.M., Santana, I., Swerdlow, R.H. & Oliveira, C.R. Mitochondria dysfunction of Alzheimer's disease cybrids enhances Aβ toxicity. J. Neurochem.89, 1417–1426 (2004). ArticlePubMedCAS Google Scholar
Caspersen, C. et al. Mitochondrial Aβ: a potential focal point for neuronal metabolic dysfunction in Alzheimer's disease. FASEB J.19, 2040–2041 (2005). ArticlePubMedCAS Google Scholar
Manczak, M. et al. Mitochondria are a direct site of Aβ accumulation in Alzheimer's disease neurons: implications for free radical generation and oxidative damage in disease progression. Hum. Mol. Genet.15, 1437–1449 (2006). ArticlePubMedCAS Google Scholar
Takuma, K. et al. ABAD enhances Aβ-induced cell stress via mitochondrial dysfunction. FASEB J.19, 597–598 (2005). ArticlePubMedCAS Google Scholar
Lustbader, J.W. et al. ABAD directly links Aβ to mitochondrial toxicity in Alzheimer's disease. Science304, 448–452 (2004). ArticlePubMedCAS Google Scholar
Reddy, P.H. Amyloid precursor protein–mediated free radicals and oxidative damage: implications for the development and progression of Alzheimer's disease. J. Neurochem.96, 1–13 (2006). ArticlePubMedCAS Google Scholar
Wang, J. et al. Hepatitis C virus non-structural protein NS5A interacts with FKBP38 and inhibits apoptosis in Huh7 hepatoma cells. FEBS Lett.580, 4392–4400 (2006). ArticlePubMedCAS Google Scholar
Shukkur, E.A. et al. Mitochondrial dysfunction and tau hyperphosphorylation in Ts1Cje, a mouse model for Down syndrome. Hum. Mol. Genet.15, 2752–2762 (2006). ArticlePubMedCAS Google Scholar
Crouch, P.J. et al. Copper-dependent inhibition of human cytochrome c oxidase by a dimeric conformer of amyloid-β1–42. J. Neurosci.25, 672–679 (2005). ArticlePubMedPubMed CentralCAS Google Scholar
Devi, L., Prabhu, B.M., Galati, D.F., Avadhani, N.G. & Anandatheerthavarada, H.K. Accumulation of amyloid precursor protein in the mitochondrial import channels of human Alzheimer's disease brain is associated with mitochondrial dysfunction. J. Neurosci.26, 9057–9068 (2006). ArticlePubMedPubMed CentralCAS Google Scholar
Fernandez-Vizarra, P. et al. Intra- and extracellular Aβ and PHF in clinically evaluated cases of Alzheimer's disease. Histol. Histopathol.19, 823–844 (2004). PubMedCAS Google Scholar
Chen, X., Stern, D. & Yan, S.D. in Neurobiology of Alzheimer's Disease (eds. Dawbarn, D. & Allen, S.J.) 227–244 (Oxford University Press, Oxford, 2007). Google Scholar
Cardoso, S.M., Santos, S., Swerdlow, R.H. & Oliveira, C.R. Functional mitochondria are required for amyloid β–mediated neurotoxicity. FASEB J.15, 1439–1441 (2001). ArticlePubMedCAS Google Scholar
Crompton, M. Mitochondria and aging: a role for the permeability transition? Aging Cell3, 3–6 (2004). ArticlePubMedCAS Google Scholar
Halestrap, A.P., McStay, G.P. & Clarke, S.J. The permeability transition pore complex: another view. Biochimie84, 153–166 (2002). ArticlePubMedCAS Google Scholar
Zamzami, N., Larochette, N. & Kroemer, G. Mitochondrial permeability transition in apoptosis and necrosis. Cell Death Differ.12 Suppl 2, 1478–1480 (2005). ArticlePubMedCAS Google Scholar
Crompton, M., Barksby, E., Johnson, N. & Capano, M. Mitochondrial intermembrane junctional complexes and their involvement in cell death. Biochimie84, 143–152 (2002). ArticlePubMedCAS Google Scholar
Halestrap, A.P. Calcium, mitochondria and reperfusion injury: a pore way to die. Biochem. Soc. Trans.34, 232–237 (2006). ArticlePubMedCAS Google Scholar
Bernardi, P. et al. The mitochondrial permeability transition from in vitro artifact to disease target. FEBS J.273, 2077–2099 (2006). ArticlePubMedCAS Google Scholar
Crompton, M., Virji, S. & Ward, J.M. Cyclophilin-D binds strongly to complexes of the voltage-dependent anion channel and the adenine nucleotide translocase to form the permeability transition pore. Eur. J. Biochem.258, 729–735 (1998). ArticlePubMedCAS Google Scholar
Halestrap, A.P., Woodfield, K.Y. & Connern, C.P. Oxidative stress, thiol reagents, and membrane potential modulate the mitochondrial permeability transition by affecting nucleotide binding to the adenine nucleotide translocase. J. Biol. Chem.272, 3346–3354 (1997). ArticlePubMedCAS Google Scholar
Connern, C.P. & Halestrap, A.P. Recruitment of mitochondrial cyclophilin to the mitochondrial inner membrane under conditions of oxidative stress that enhance the opening of a calcium-sensitive non-specific channel. Biochem. J.302, 321–324 (1994). ArticlePubMedPubMed CentralCAS Google Scholar
Andreeva, L., Heads, R. & Green, C.J. Cyclophilins and their possible role in the stress response. Int. J. Exp. Pathol.80, 305–315 (1999). ArticlePubMedPubMed CentralCAS Google Scholar
Baines, C.P. et al. Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature434, 658–662 (2005). ArticlePubMedCAS Google Scholar
Pastorino, J.G., Chen, S.T., Tafani, M., Snyder, J.W. & Farber, J.L. The overexpression of Bax produces cell death upon induction of the mitochondrial permeability transition. J. Biol. Chem.273, 7770–7775 (1998). ArticlePubMedCAS Google Scholar
Nakagawa, T. et al. Cyclophilin D–dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature434, 652–658 (2005). ArticlePubMedCAS Google Scholar
Basso, E. et al. Properties of the permeability transition pore in mitochondria devoid of cyclophilin D. J. Biol. Chem.280, 18558–18561 (2005). ArticlePubMedCAS Google Scholar
Schinzel, A.C. et al. Cyclophilin D is a component of mitochondrial permeability transition and mediates neuronal cell death after focal cerebral ischemia. Proc. Natl. Acad. Sci. USA102, 12005–12010 (2005). ArticlePubMedCASPubMed Central Google Scholar
Yan, Y. et al. Surface plasmon resonance and nuclear magnetic resonance studies of ABAD-Aβ interaction. Biochemistry46, 1724–1731 (2007). ArticlePubMedCAS Google Scholar
Aguilar, M.I. & Small, D.H. Surface plasmon resonance for the analysis of β-amyloid interactions and fibril formation in Alzheimer's disease research. Neurotox. Res.7, 17–27 (2005). ArticlePubMedCAS Google Scholar
Bergersen, L.H., Storm-Mathisen, J. & Gundersen, V. Immunogold quantification of amino acids and proteins in complex subcellular compartments. Nat. Protoc.3, 144–152 (2008). ArticlePubMedCAS Google Scholar
Vitolo, O.V. et al. Amyloid β-peptide inhibition of the PKA/CREB pathway and long-term potentiation: reversibility by drugs that enhance cAMP signaling. Proc. Natl. Acad. Sci. USA99, 13217–13221 (2002). ArticlePubMedCASPubMed Central Google Scholar
Klann, E., Roberson, E.D., Knapp, L.T. & Sweatt, J.D. A role for superoxide in protein kinase C activation and induction of long-term potentiation. J. Biol. Chem.273, 4516–4522 (1998). ArticlePubMedCAS Google Scholar
Kamsler, A. & Segal, M. Paradoxical actions of hydrogen peroxide on long-term potentiation in transgenic superoxide dismutase-1 mice. J. Neurosci.23, 10359–10367 (2003). ArticlePubMedPubMed CentralCAS Google Scholar
Naga, K.K., Sullivan, P.G. & Geddes, J.W. High cyclophilin D content of synaptic mitochondria results in increased vulnerability to permeability transition. J. Neurosci.27, 7469–7475 (2007). ArticlePubMedPubMed CentralCAS Google Scholar
Eliseev, R.A. et al. Role of cyclophilin D in the resistance of brain mitochondria to the permeability transition. Neurobiol. Aging28, 1532–1542 (2007). ArticlePubMedCAS Google Scholar
Morais Cardoso, S., Swerdlow, R.H. & Oliveira, C.R. Induction of cytochrome c-mediated apoptosis by amyloid β 25–35 requires functional mitochondria. Brain Res.931, 117–125 (2002). ArticlePubMedCAS Google Scholar
Moreira, P.I., Santos, M.S., Moreno, A., Rego, A.C. & Oliveira, C. Effect of amyloid β-peptide on permeability transition pore: a comparative study. J. Neurosci. Res.69, 257–267 (2002). ArticlePubMedCAS Google Scholar
Maragos, W.F. et al. Methamphetamine toxicity is attenuated in mice that overexpress human manganese superoxide dismutase. Brain Res.878, 218–222 (2000). ArticlePubMedCAS Google Scholar
Hensley, K. et al. A model for β-amyloid aggregation and neurotoxicity based on free radical generation by the peptide: relevance to Alzheimer disease. Proc. Natl. Acad. Sci. USA91, 3270–3274 (1994). ArticlePubMedCASPubMed Central Google Scholar
Serrano, F. & Klann, E. Reactive oxygen species and synaptic plasticity in the aging hippocampus. Ageing Res. Rev.3, 431–443 (2004). ArticlePubMedCAS Google Scholar
Liu, R. et al. Reversal of age-related learning deficits and brain oxidative stress in mice with superoxide dismutase/catalase mimetics. Proc. Natl. Acad. Sci. USA100, 8526–8531 (2003). ArticlePubMedCASPubMed Central Google Scholar
Esposito, L. et al. Reduction in mitochondrial superoxide dismutase modulates Alzheimer's disease-like pathology and accelerates the onset of behavioral changes in human amyloid precursor protein transgenic mice. J. Neurosci.26, 5167–5179 (2006). ArticlePubMedPubMed CentralCAS Google Scholar
Yan, S.D. et al. RAGE and amyloid-β peptide neurotoxicity in Alzheimer's disease. Nature382, 685–691 (1996). ArticlePubMedCAS Google Scholar
Xie, C.W. Calcium-regulated signaling pathways: role in amyloid β–induced synaptic dysfunction. Neuromolecular Med.6, 53–64 (2004). ArticlePubMedCAS Google Scholar
Origlia, N. et al. Receptor for advanced glycation end product-dependent activation of p38 mitogen-activated protein kinase contributes to amyloid-β–mediated cortical synaptic dysfunction. J. Neurosci.28, 3521–3530 (2008). ArticlePubMedPubMed CentralCAS Google Scholar
Hou, F.F. et al. Receptor for advanced glycation end products on human synovial fibroblasts: role in the pathogenesis of dialysis-related amyloidosis. J. Am. Soc. Nephrol.13, 1296–1306 (2002). ArticlePubMedCAS Google Scholar
Murakami, K. et al. Mitocondrial susceptibility to oxidative stress exacerbates cerebral infarction that follows permanent focal cerebral ischemia in mutant mice with manganese superoxide dismutase deficiency. J. Neurosci.18, 205–213 (1998). ArticlePubMedPubMed CentralCAS Google Scholar
Friberg, H., Connern, C., Halestrap, A.P. & Wieloch, T. Differences in the activation of the mitochondrial permeability transition among brain regions in the rat correlate with selective vulnerability. J. Neurochem.72, 2488–2497 (1999). ArticlePubMedCAS Google Scholar