HIV-1 Vif protein binds the editing enzyme APOBEC3G and induces its degradation (original) (raw)

References

  1. Gabuzda, D.H. et al. Role of vif in replication of human immunodeficiency virus type 1 in CD4+ T lymphocytes. J. Virol. 66, 6489–6495 (1992).
    CAS PubMed PubMed Central Google Scholar
  2. Madani, N. & Kabat, D. An endogenous inhibitor of human immunodeficiency virus in human lymphocytes is overcome by the viral Vif protein. J. Virol. 72, 10251–10255 (1998).
    CAS PubMed PubMed Central Google Scholar
  3. Simon, J.H., Gaddis, N.C., Fouchier, R.A. & Malim, M.H. Evidence for a newly discovered cellular anti-HIV-1 phenotype. Nat. Med. 4, 1397–1400 (1998).
    Article CAS Google Scholar
  4. Sheehy, A.M., Gaddis, N.C., Choi, J.D. & Malim, M.H. Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature 418, 646–650 (2002).
    Article CAS Google Scholar
  5. Gaddis, N.C., Chertova, E., Sheehy, A.M., Henderson, L.E. & Malim, M.H. Comprehensive investigation of the molecular defect in vif-deficient human immunodeficiency virus type 1 virions. J. Virol. 77, 5810–5820 (2003).
    Article CAS Google Scholar
  6. Ochsenbauer, C., Wilk, T. & Bosch, V. Analysis of vif-defective human immunodeficiency virus type 1 (HIV-1) virions synthesized in 'non-permissive' T lymphoid cells stably infected with selectable HIV-1. J. Gen. Virol. 78, 627–635 (1997).
    Article CAS Google Scholar
  7. von Schwedler, U., Song, J., Aiken, C. & Trono, D. Vif is crucial for human immunodeficiency virus type 1 proviral DNA synthesis in infected cells. J. Virol. 67, 4945–4955 (1993).
    CAS PubMed PubMed Central Google Scholar
  8. Courcoul, M. et al. Peripheral blood mononuclear cells produce normal amounts of defective Vif- human immunodeficiency virus type 1 particles which are restricted for the preretrotranscription steps. J. Virol. 69, 2068–2074 (1995).
    CAS PubMed PubMed Central Google Scholar
  9. Simon, J.H. & Malim, M.H. The human immunodeficiency virus type 1 Vif protein modulates the postpenetration stability of viral nucleoprotein complexes. J. Virol. 70, 5297–5305 (1996).
    CAS PubMed PubMed Central Google Scholar
  10. Dettenhofer, M., Cen, S., Carlson, B.A., Kleiman, L. & Yu, X.F. Association of human immunodeficiency virus type 1 Vif with RNA and its role in reverse transcription. J. Virol. 74, 8938–8945 (2000).
    Article CAS Google Scholar
  11. Goncalves, J., Korin, Y., Zack, J. & Gabuzda, D. Role of Vif in human immunodeficiency virus type 1 reverse transcription. J. Virol. 70, 8701–8709 (1996).
    CAS PubMed PubMed Central Google Scholar
  12. Teng, B., Burant, C.F. & Davidson, N.O. Molecular cloning of an apolipoprotein B messenger RNA editing protein. Science 260, 1816–1819 (1993).
    Article CAS Google Scholar
  13. Harris, R.S., Petersen-Mahrt, S.K. & Neuberger, M.S. RNA editing enzyme APOBEC1 and some of its homologs can act as DNA mutators. Mol. Cell 10, 1247–1253 (2002).
    Article CAS Google Scholar
  14. Liu, H. et al. The Vif protein of human and simian immunodeficiency viruses is packaged into virions and associates with viral core structures. J. Virol. 69, 7630–7638 (1995).
    CAS PubMed PubMed Central Google Scholar
  15. Khan, M.A. et al. Human immunodeficiency virus type 1 Vif protein is packaged into the nucleoprotein complex through an interaction with viral genomic RNA. J. Virol. 75, 7252–7265 (2001).
    Article CAS Google Scholar
  16. Lecossier, D., Bouchonnet, F., Clavel, F. & Hance, A.J. Hypermutation of HIV-1 DNA in the absence of the Vif protein. Science 300, 1112 (2003).
    Article CAS Google Scholar
  17. Zhang, H. et al. The cytidine deaminase CEM15 induces hypermutation in newly synthesized HIV-1 DNA. Nature 424, 94–98 (2003).
    Article CAS Google Scholar
  18. Mangeat, B., Turelli, P., Caron, G., Friedli, L.P. & Trono, D. Broad antiretroviral defense by human Apobec3G through lethal editing of nascent reverse transcripts. Nature 424, 99–103 (2003).
    Article CAS Google Scholar
  19. Harris, R.S. et al. DNA deamination mediates innate immunity to retroviral infection. Cell 113, 803–809 (2003).
    Article CAS Google Scholar
  20. Mariani, R. et al. Species-specific exclusion of APOBEC3G from HIV-1 virions by Vif. Cell 114, 21–31 (2003).
    Article CAS Google Scholar
  21. Oberste, M.S. & Gonad, M.A. Conservation of amino-acid sequence motifs in lentivirus Vif proteins. Virus Genes 6, 95–102 (1992).
    Article CAS Google Scholar
  22. Page, K.A., Landau, N.R. & Littman, D.R. Construction and use of a human immunodeficiency virus vector for analysis of virus infectivity. J. Virol. 64, 5270–5276 (1990).
    CAS PubMed PubMed Central Google Scholar
  23. Madani, N. & Kabat, D. Cellular and viral specificities of human immunodeficiency virus type 1 vif protein. J. Virol. 74, 5982–5987 (2000).
    Article CAS Google Scholar
  24. Simon, J.H., Sheehy, A.M., Carpenter, E.A., Fouchier, R.A. & Malim, M.H. Mutational analysis of the human immunodeficiency virus type 1 Vif protein. J. Virol. 73, 2675–2681 (1999).
    CAS PubMed PubMed Central Google Scholar
  25. Garrett, E.D., Tiley, L.S. & Cullen, B.R. Rev activates expression of the human immunodeficiency virus type 1 vif and vpr gene products. J. Virol. 65, 1653–1657 (1991).
    CAS PubMed PubMed Central Google Scholar
  26. Gluschankof, P., Mondor, I., Gelderblom, H.R. & Sattentau, Q.J. Cell membrane vesicles are a major contaminant of gradient-enriched human immunodeficiency virus type-1 preparations. Virology 230, 125–133 (1997).
    Article CAS Google Scholar
  27. Verma, R. & Deshaies, R.J. A proteasome howdunit: the case of the missing signal. Cell 101, 341–344 (2000).
    Article CAS Google Scholar
  28. Kamura, T. et al. The elongin BC complex interacts with the conserved SOCS-box motif present in members of the SOCS, ras, WD-40 repeat, and ankyrin repeat families. Genes Dev. 12, 3872–3881 (1998).
    Article CAS Google Scholar
  29. Iwai, K. et al. Identification of the von Hippel-Lindau tumor-suppressor protein as part of an active E3 ubiquitin ligase complex. Proc. Natl. Acad. Sci. USA 96, 12436–12441 (1999).
    Article CAS Google Scholar
  30. Schubert, U. et al. CD4 glycoprotein degradation induced by human immunodeficiency virus type 1 Vpu protein requires the function of proteasomes and the ubiquitin-conjugating pathway. J. Virol. 72, 2280–2288 (1998).
    CAS PubMed PubMed Central Google Scholar
  31. Margottin, F. et al. A novel human WD protein, h-beta TrCp, that interacts with HIV-1 Vpu connects CD4 to the ER degradation pathway through an F-box motif. Mol. Cell 1, 565–574 (1998).
    Article CAS Google Scholar
  32. Desrosiers, R.C. et al. Identification of highly attenuated mutants of simian immunodeficiency virus. J. Virol. 72, 1431–1437 (1998).
    CAS PubMed PubMed Central Google Scholar
  33. Barnes, W.M. PCR amplification of up to 35-kb DNA with high fidelity and high yield from lambda bacteriophage templates. Proc. Natl. Acad. Sci. USA 91, 2216–2220 (1994).
    Article CAS Google Scholar
  34. Sambrook, J., Fritsch, E.F. & Maniatis, T. In vitro amplification of DNA by the polymerase chain reaction. in Molecular Cloning: A Laboratory Manual 14.5–14.34 (Cold Spring Harbor Laboratory Press, New York, 1989).
    Google Scholar
  35. Helseth, E. et al. Rapid complementation assays measuring replicative potential of human immunodeficiency virus type 1 envelope glycoprotein mutants. J. Virol. 64, 2416–2420 (1990).
    CAS PubMed PubMed Central Google Scholar
  36. Page, K.A., Stearns, S.M. & Littman, D.R. Analysis of mutations in the V3 domain of gp160 that affect fusion and infectivity. J. Virol. 66, 524–533 (1992).
    CAS PubMed PubMed Central Google Scholar
  37. Platt, E.J., Kuhmann, S.E., Rose, P.P. & Kabat, D. Adaptive mutations in the V3 loop of gp120 enhance fusogenicity of human immunodeficiency virus type 1 and enable use of a CCR5 coreceptor that lacks the amino-terminal sulfated region. J. Virol. 75, 12266–12278 (2001).
    Article CAS Google Scholar
  38. Marin, M., Tailor, C.S., Nouri, A. & Kabat, D. Sodium-dependent neutral amino acid transporter type 1 is an auxiliary receptor for baboon endogenous retrovirus. J. Virol. 74, 8085–8093 (2000).
    Article CAS Google Scholar
  39. Klippel, A., Escobedo, J.A., Hirano, M. & Williams, L.T. The interaction of small domains between the subunits of phosphatidylinositol 3-kinase determines enzyme activity. Mol. Cell. Biol. 14, 2675–2685 (1994).
    Article CAS Google Scholar
  40. Tailor, C.S., Nouri, A., Lee, C.G., Kozak, C. & Kabat, D. Cloning and characterization of a cell surface receptor for xenotropic and polytropic murine leukemia viruses. Proc. Natl. Acad. Sci. USA 96, 927–932 (1999).
    Article CAS Google Scholar

Download references