Macroscopic transport by synthetic molecular machines (original) (raw)

References

  1. Schliwa, M. (ed.) Molecular Motors (Wiley-VCH, Weinheim, 2003).
  2. Noji, H., Yasuda, R., Yoshida, M. & Kinosita, K. Jr. Direct observation of the rotation of F1-ATPase. Nature 386, 299–302 (1997).
    Article Google Scholar
  3. Soong, R. K., Bachand, G. D., Neves, H. P., Olkhovets, A. G. & Montemagno, C. D. Powering an inorganic nanodevice with a biomolecular motor. Science 290, 1555–1558 (2000).
    Article Google Scholar
  4. Soong, R. K., Neves, H. P., Schmidt, J. J. & Montemagno, C. D. Engineering issues in the fabrication of a hybrid nano-propeller system powered by F1-ATPase. Biomed. Microdev. 3, 71–73 (2001).
    Article Google Scholar
  5. Hess, H., Clemmens, J., Qin, D., Howard, J. & Vogel, V. Light-controlled molecular shuttles made from motor proteins carrying cargo on engineered surfaces. Nano Lett. 1, 235–239 (2001).
    Article Google Scholar
  6. Liu, H. et al. Control of a biomolecular motor-powered nanodevice with an engineered chemical switch. Nature Mater. 1, 173–177 (2002).
    Article Google Scholar
  7. Diez, S. et al. Stretching and transporting DNA molecules using motor proteins. Nano Lett. 3, 1251–1254 (2003).
    Article Google Scholar
  8. Hess, H., Bachand, G. D. & Vogel, V. Powering nanodevices with biomolecular motors. Chem. Eur. J. 10, 2110–2116 (2004).
    Article Google Scholar
  9. Sauvage, J. P. & Dietrich-Buchecker, C. (eds) Molecular Catenanes, Rotaxanes and Knots: A Journey Through the World of Molecular Topology (Wiley-VCH, Weinheim, 1999).
  10. Balzani, V., Credi, A., Raymo, F. M. & Stoddart, J. F. Artificial molecular machines. Angew. Chem. Int. Edn Engl. 39, 3348–3391 (2000).
    Article Google Scholar
  11. Balzani, V., Venturi, M. & Credi, A. Molecular Devices and Machines - A Journey into the Nanoworld (Wiley-VCH, Weinheim, 2003).
    Book Google Scholar
  12. Kay, E. R. & Leigh, D. A. Synthetic molecular machines. in Functional Artificial Receptors (eds Schrader, T. & Hamilton, A. D.) (Wiley-VCH, Weinheim, 2005).
    Google Scholar
  13. Huang, T. J. et al. A nanomechanical device based on linear molecular motors. Appl. Phys. Lett. 85, 5391–5393 (2004).
    Article Google Scholar
  14. Flood, A. H. et al. Meccano on the nanoscale - A blueprint for making some of the world’s tiniest machines. Aust. J. Chem. 57, 301–322 (2004).
    Article Google Scholar
  15. Bottari, G., Leigh, D. A. & Pérez, E. M. Chiroptical switching in a bistable molecular shuttle. J. Am. Chem. Soc. 125, 13360–13361 (2003).
    Article Google Scholar
  16. Wang, Q. -C., Qu, D. -H., Ren, J., Chen, K. & Tian, H. A lockable light-driven molecular shuttle with a fluorescent signal. Angew. Chem. Int. Edn Engl. 43, 2661–2665 (2004).
    Article Google Scholar
  17. Qu, D. -H., Wang, Q. -C., Ren, J. & Tian, H. A light-driven rotaxane molecular shuttle with dual fluorescence addresses. Org. Lett. 6, 2085–2088 (2004).
    Article Google Scholar
  18. Pérez, E. M., Dryden, D. T. F., Leigh, D. A., Teobaldi, G. & Zerbetto, F. A generic basis for some simple light-operated mechanical molecular machines. J. Am. Chem. Soc. 126, 12210–12211 (2004).
    Article Google Scholar
  19. Leigh, D. A. et al. Patterning through controlled submolecular motion: Rotaxane-based switches and logic gates that function in solution and polymer films. Angew. Chem. Int. Edn Engl. 44, 3062–3067 (2005).
    Article Google Scholar
  20. Altieri, A. et al. Remarkable positional discrimination in bistable light- and heat-switchable hydrogen-bonded molecular shuttles. Angew. Chem. Int. Edn Engl. 42, 2296–2300 (2003).
    Article Google Scholar
  21. Masaaki, Y. & Masashi, M. Newest Aspects of Fluoro Functional Materials (CMC, Tokyo, 1994).
    Google Scholar
  22. Cavallini, M. et al. Information storage using supramolecular surface patterns. Science 299, 531 (2003).
    Article Google Scholar
  23. Cecchet, F. et al. Structural, electrochemical, and photophysical properties of a molecular shuttle attached to an acid-terminated self-assembled monolayer. J. Phys. Chem. B 108, 15192–15199 (2004).
    Article Google Scholar
  24. Katz, E., Lioubashevsky, O. & Willner, I. Electromechanics of a redox-active rotaxane in a monolayer assembly on an electrode. J. Am. Chem. Soc. 126, 15520–15532 (2004).
    Article Google Scholar
  25. Kim, K. et al. A pseudorotaxane on gold: Formation of self-assembled monolayers, reversible dethreading and rethreading of the ring, and ion-gating behavior. Angew. Chem. Int. Edn Engl. 42, 2293–2296 (2003).
    Article Google Scholar
  26. Long, B., Nikitin, K. & Fitzmaurice, D. Assembly of an electronically switchable rotaxane on the surface of a titanium dioxide nanoparticle. J. Am. Chem. Soc. 125, 15490–15498 (2003).
    Article Google Scholar
  27. Katz, E., Sheeney Haj, I. & Willner, I. Electrical contacting of glucose oxidase in a redox-active rotaxane configuration. Angew. Chem. Int. Edn Engl. 43, 3292–3300 (2004).
    Article Google Scholar
  28. Huang, T. J. et al. Mechanical shuttling of linear motor-molecules in condensed phases on solid substrates. Nano Lett. 4, 2065–2071 (2004).
    Article Google Scholar
  29. Tseng, H. -R., Wu, D., Fang, N. X., Zhang, X. & Stoddart, J. F. The metastability of an electrochemically controlled nanoscale machine on gold surfaces. Chem. Phys. Chem. 5, 111–116 (2004).
    Article Google Scholar
  30. Jang, S. S. et al. Structures and properties of self-assembled monolayers of bistable [2]rotaxanes on Au (111) surfaces from molecular dynamics simulations validated with experiment. J. Am. Chem. Soc. 127, 1563–1575 (2005).
    Article Google Scholar
  31. Liu, Y., Mu, L., Liu, B. & Kong, J. Controlled switchable surfaces. Chem. Eur. J. 11, 2622–2631 (2005).
    Article Google Scholar
  32. Grunze, M. Driven liquids. Science 283, 41–42 (1999).
    Article Google Scholar
  33. Gau, H., Herminghaus, S., Lenz, P. & Lipowsky, R. Liquid morphologies on structured surfaces: from microchannels to microchips. Science 283, 46–49 (1999).
    Article Google Scholar
  34. Gallardo, B. S. et al. Electrochemical principles for active control of liquids on submillimeter scales. Science 283, 57–61 (1999).
    Article Google Scholar
  35. Daniel, S., Chaudhury, M. K. & Chen, J. C. Fast drop movements resulting from the phase change on a gradient surface. Science 291, 633–636 (2001).
    Article Google Scholar
  36. Ichimura, K., Oh, S. -K. & Nakagawa, M. Light-driven motion of liquids on a photoresponsive surface. Science 288, 1624–1626 (2000).
    Article Google Scholar
  37. Oh, S. -K., Nakagawa, M. & Ichimura, K. Photocontrol of liquid motion on an azobenzene monolayer. J. Mater. Chem. 12, 2262–2269 (2002).
    Article Google Scholar
  38. Greenspan, H. P. On the motion of a small viscous droplet that wets a surface. J. Fluid Mech. 84, 125–143 (1978).
    Article Google Scholar
  39. Brochard, F. Motions of droplets on solid surfaces induced by chemical or thermal gradients. Langmuir 5, 432–438 (1989).
    Article Google Scholar
  40. Neumann, A. W. & Good, R. J. in Surface and Colloid Science Vol. 11 (eds Good, R. J. & Stromberg, R. R.) 31–91 (Plenum, New York, 1979).
    Book Google Scholar
  41. Blomstrom, D. C., Herbig, K. & Simmons, H. E. Photolysis of methylene iodide in the presence of olefins. J. Org. Chem. 30, 959–964 (1965).
    Article Google Scholar
  42. Pienta, N. J. & Kropp, P. J. Photochemistry of alkyl halides. 6. _gem_-Diiodides. A convenient method for the cyclopropanation of olefins. J. Am. Chem. Soc. 100, 655–657 (1978).
    Article Google Scholar
  43. Kropp, P. J., Pienta, N. J., Sawyer, J. A. & Polniaszek, R. P. Photochemistry of alkyl halides-VII: Cyclopropanation of alkenes. Tetrahedron 37, 3229–3236 (1981).
    Article Google Scholar
  44. Tamovsky, A. N., Alvarez, J. -L., Arkady, P., Sundstrom, V. & Akesson, E. Photodissociation dynamics of diiodomethane in solution. Chem. Phys. Lett. 312, 121–130 (1999).
    Article Google Scholar
  45. Chaudhury, M. K. & Whitesides, G. M. How to make water run uphill. Science 256, 1539–1541 (1992).
    Article Google Scholar

Download references