Macroscale delivery systems for molecular and cellular payloads (original) (raw)
Dang, J. M. & Leong, K. W. Natural polymers for gene delivery and tissue engineering. Adv. Drug Deliv. Rev.58, 487–499 (2006). ArticleCAS Google Scholar
Folkman, J., Long, D. M. & Rosenbaum, R. Silicone rubber: A new diffusion property useful for general anesthesia. Science154, 148–149 (1966). ArticleCAS Google Scholar
Hoffman, A. S. The origins and evolution of 'controlled' drug delivery systems. J. Control. Release132, 153–163 (2008). ArticleCAS Google Scholar
Langer, R. & Folkman, J. Polymers for the sustained release of proteins and other macromolecules. Nature263, 797–800 (1976). ArticleCAS Google Scholar
Kanasty, R., Dorkin, R. J., Vegas, A. & Anderson, D. Delivery materials for siRNA therapeutics. Nature Mater.12, 967–977 (2013). ArticleCAS Google Scholar
Irvine, D. J., Swartz, M. A. & Szeto, G. L. Engineering synthetic vaccines using cues from natural immunity. Nature Mater.12, 978–990 (2013). ArticleCAS Google Scholar
Mura, S., Nicolas, J. & Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nature Mater.12, 991–1003 (2013). ArticleCAS Google Scholar
Roseman, T. J. Release of steroids from a silicone polymer. J. Pharm. Sci.61, 46–50 (1972). ArticleCAS Google Scholar
Pitt, C. G., Gratzl, M. M., Jeffcoat, A. R., Zweidinger, R. & Schindler, A. Sustained drug delivery systems II: Factors affecting release rates from poly(ɛ-caprolactone) and related biodegradable polyesters. J. Pharm. Sci.68, 1534–1538 (1979). ArticleCAS Google Scholar
Langer, R. Polymeric delivery systems for controlled drug release. Chem. Eng. Comm.6, 1–48 (1980). ArticleCAS Google Scholar
Augst, A., Kong, H. & Mooney, D. Alginate hydrogels as biomaterials. Macromol. Biosci.6, 623–633 (2006). ArticleCAS Google Scholar
Young, S., Wong, M., Tabata, Y. & Mikos, A. G. Gelatin as a delivery vehicle for the controlled release of bioactive molecules. J. Control. Release109, 256–274 (2005). ArticleCAS Google Scholar
Bhattarai, N., Gunn, J. & Zhang, M. Chitosan-based hydrogels for controlled, localized drug delivery. Adv. Drug Deliv. Rev.62, 83–99 (2010). ArticleCAS Google Scholar
Janmey, P. A., Winer, J. P. & Weisel, J. W. Fibrin gels and their clinical and bioengineering applications. J. R. Soc. Interface6, 1–10 (2009). ArticleCAS Google Scholar
Uhrich, K. E., Cannizzaro, S. M., Langer, R. S. & Shakesheff, K. M. Polymeric systems for controlled drug release. Chem. Rev.99, 3181–3198 (1999). ArticleCAS Google Scholar
Tanaka, H., Matsumura, M. & Veliky, I. A. Diffusion characteristics of substrates in Ca-alginate gel beads. Biotechnol. Bioeng.26, 53–58 (1984). ArticleCAS Google Scholar
Lin, C-C. & Metters, A. T. Hydrogels in controlled release formulations: network design and mathematical modeling. Adv. Drug Deliv. Rev.58, 1379–1408 (2006). ArticleCAS Google Scholar
Am Ende, M. T. & Peppas, N. A. Transport of ionizable drugs and proteins in crosslinked poly(acrylic acid) and poly(acrylic acid-co-2-hydroxyethyl methacrylate) hydrogels. I. Polymer characterization. J. Appl. Polym. Sci.59, 673–685 (1996). ArticleCAS Google Scholar
Am Ende, M. T. & Peppas, N. A. Transport of ionizable drugs and proteins in crosslinked poly(acrylic acid) and poly(acrylic acid-co-2-hydroxyethyl methacrylate) hydrogels. II. Diffusion and release studies. J. Control. Release48, 47–56 (1997). ArticleCAS Google Scholar
Silva, A. K. A., Richard, C., Bessodes, M., Scherman, D. & Merten, O-W. Growth factor delivery approaches in hydrogels. Biomacromolecules10, 9–18 (2009). ArticleCAS Google Scholar
Peppas, N. A., Bures, P., Leobandung, W. & Ichikawa, H. Hydrogels in pharmaceutical formulations. Eur. J. Pharm. Biopharm.50, 27–46 (2000). ArticleCAS Google Scholar
Peppas, N. A., Hilt, J. Z., Khademhosseini, A. & Langer, R. Hydrogels in biology and medicine: From molecular principles to bionanotechnology. Adv. Mater.18, 1345–1360 (2006). ArticleCAS Google Scholar
Lee, K., Silva, E. A. & Mooney, D. J. Growth factor delivery-based tissue engineering: General approaches and a review of recent developments. J. R. Soc. Interface8, 153–170 (2011). ArticleCAS Google Scholar
Gupta, P., Vermani, K. & Garg, S. Hydrogels: From controlled release to pH-responsive drug delivery. Drug Discov. Today7, 569–579 (2002). ArticleCAS Google Scholar
Hoare, T. R. & Kohane, D. S. Hydrogels in drug delivery: Progress and challenges. Polymer49, 1993–2007 (2008). ArticleCAS Google Scholar
Lu, S. & Anseth, K. S. Photopolymerization of multilaminated poly(HEMA) hydrogels for controlled release. J. Control. Release57, 291–300 (1999). ArticleCAS Google Scholar
Galaev, I. Y. & Mattiasson, B. 'Smart' polymers and what they could do in biotechnology and medicine. Trends Biotechnol.17, 335–340 (1999). ArticleCAS Google Scholar
Miyata, T., Asami, N. & Uragami, T. A reversibly antigen-responsive hydrogel. Nature399, 766–769 (1999). ArticleCAS Google Scholar
Zhang, J. & Peppas, N. A. Synthesis and characterization of pH- and temperature-sensitive poly(methacrylic acid)/poly(_N_-isopropylacrylamide) interpenetrating polymeric networks. Macromolecules33, 102–107 (2000). ArticleCAS Google Scholar
Wang, N. X. & von Recum, H. A. Affinity-based drug delivery. Macromol. Biosci.11, 321–332 (2011). ArticleCAS Google Scholar
Borselli, C. et al. Functional muscle regeneration with combined delivery of angiogenesis and myogenesis factors. Proc. Natl Acad. Sci. USA107, 3287–3292 (2010). ArticleCAS Google Scholar
Pike, D. B. et al. Heparin-regulated release of growth factors in vitro and angiogenic response in vivo to implanted hyaluronan hydrogels containing VEGF and bFGF. Biomaterials27, 5242–5251 (2006). ArticleCAS Google Scholar
Thatiparti, T. R., Shoffstall, A. J. & von Recum, H. A. Cyclodextrin-based device coatings for affinity-based release of antibiotics. Biomaterials31, 2335–2347 (2010). ArticleCAS Google Scholar
Conrad, H. E. Heparin-Binding Proteins (Academic, 1997). Google Scholar
Silva, E. A. & Mooney, D. J. Effects of VEGF temporal and spatial presentation on angiogenesis. Biomaterials31, 1235–1241 (2010). ArticleCAS Google Scholar
Freeman, I., Kedem, A. & Cohen, S. The effect of sulfation of alginate hydrogels on the specific binding and controlled release of heparin-binding proteins. Biomaterials29, 3260–3268 (2008). ArticleCAS Google Scholar
Stockwell, A. F., Davis, S. S. & Walker, S. E. In vitro evaluation of alginate gel systems as sustained release drug delivery systems. J. Control. Release3, 167–175 (1986). ArticleCAS Google Scholar
Vlatakis, G., Andersson, L. I., Müller, R. & Mosbach, K. Drug assay using antibody mimics made by molecular imprinting. Nature361, 645–647 (1993). ArticleCAS Google Scholar
Hiratani, H., Mizutani, Y. & Alvarez-Lorenzo, C. Controlling drug release from imprinted hydrogels by modifying the characteristics of the imprinted cavities. Macromol. Biosci.5, 728–733 (2005). ArticleCAS Google Scholar
Alvarez-Lorenzo, C. & Concheiro, A. Molecularly imprinted polymers for drug delivery. J. Chromatogr. B804, 231–245 (2004). ArticleCAS Google Scholar
Rachkov, A. & Minoura, N. Towards molecularly imprinted polymers selective to peptides and proteins. The epitope approach. Biochim. Biophys. Acta1544, 255–266 (2001). ArticleCAS Google Scholar
Richardson, T. P., Peters, M. C., Ennett, A. B. & Mooney, D. J. Polymeric system for dual growth factor delivery. Nature Biotechnol.19, 1029–1034 (2001). ArticleCAS Google Scholar
Ishihara, M. et al. Controlled release of fibroblast growth factors and heparin from photocrosslinked chitosan hydrogels and subsequent effect on in vivo vascularization. J. Biomed. Mater. Res. A64, 551–559 (2003). ArticleCAS Google Scholar
Wood, K. C., Chuang, H. F., Batten, R. D., Lynn, D. M. & Hammond, P. T. Controlling interlayer diffusion to achieve sustained, multiagent delivery from layer-by-layer thin films. Proc. Natl Acad. Sci. USA103, 10207–10212 (2006). ArticleCAS Google Scholar
Hammond, P. T. Form and function in multilayer assembly: New applications at the nanoscale. Adv. Mater.16, 1271–1293 (2004). ArticleCAS Google Scholar
Macdonald, M. L. et al. Tissue integration of growth factor-eluting layer-by-layer polyelectrolyte multilayer coated implants. Biomaterials32, 1446–1453 (2011). ArticleCAS Google Scholar
Leong, K. W., Brott, B. C. & Langer, R. Bioerodible polyanhydrides as drug-carrier matrices. I: Characterization, degradation, and release characteristics. J. Biomed. Mater. Res.19, 941–955 (1985). ArticleCAS Google Scholar
Wood, K. C. et al. Electroactive controlled release thin films. Proc. Natl Acad. Sci. USA105, 2280–2285 (2008). ArticleCAS Google Scholar
Kost, J., Leong, K. & Langer, R. Ultrasound-enhanced polymer degradation and release of incorporated substances. Proc. Natl Acad. Sci. USA86, 7663–7666 (1989). ArticleCAS Google Scholar
Liu, T-Y., Hu, S-H., Liu, T-Y., Liu, D-M. & Chen, S-Y. Magnetic-sensitive behavior of intelligent ferrogels for controlled release of drug. Langmuir22, 5974–5978 (2006). ArticleCAS Google Scholar
Santini, J. T., Cima, M. J. & Langer, R. A controlled-release microchip. Nature397, 335–338 (1999). ArticleCAS Google Scholar
Pitt, W. G., Husseini, G. A. & Staples, B. J. Ultrasonic drug delivery: A general review. Expert Opin. Drug Deliv.1, 37–56 (2004). ArticleCAS Google Scholar
Zhao, X. et al. Active scaffolds for on-demand drug and cell delivery. Proc. Natl Acad. Sci. USA108, 67–72 (2011). ArticleCAS Google Scholar
Murdan, S. Electro-responsive drug delivery from hydrogels. J. Control. Release92, 1–17 (2003). ArticleCAS Google Scholar
Sawahata, K., Hara, M., Yasunaga, H. & Osada, Y. Electrically controlled drug delivery system using polyelectrolyte gels. J. Control. Release14, 253–262 (1990). ArticleCAS Google Scholar
Farra, R. et al. First-in-human testing of a wirelessly controlled drug delivery microchip. Sci. Transl. Med.4, 122ra21 (2012). ArticleCAS Google Scholar
Lutolf, M. P. & Hubbell, J. A. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nature Biotechnol.23, 47–55 (2005). ArticleCAS Google Scholar
Kuhl, P. R. & Griffith-Cima, L. G. Tethered epidermal growth factor as a paradigm for growth factor–induced stimulation from the solid phase. Nature Med.2, 1022–1027 (1996). ArticleCAS Google Scholar
Mann, B. K., Schmedlen, R. H. & West, J. L. Tethered-TGF-β increases extracellular matrix production of vascular smooth muscle cells. Biomaterials22, 439–444 (2001). ArticleCAS Google Scholar
Liu, H-W., Chen, C-H., Tsai, C-L., Lin, I-H. & Hsiue, G-H. Heterobifunctional poly(ethylene glycol)-tethered bone morphogenetic protein-2-stimulated bone marrow mesenchymal stromal cell differentiation and osteogenesis. Tissue Eng.13, 1113–1124 (2007). ArticleCAS Google Scholar
Schense, J. C. & Hubbell, J. A. Cross-linking exogenous bifunctional peptides into fibrin gels with factor XIIIa. Bioconjug. Chem.10, 75–81 (1999). ArticleCAS Google Scholar
Hubbell, J. A. Bioactive biomaterials. Curr. Opin. Biotechnol.10, 123–129 (1999). ArticleCAS Google Scholar
Ito, Y. Covalently immobilized biosignal molecule materials for tissue engineering. Soft Matter4, 46–56 (2008). ArticleCAS Google Scholar
Sakiyama-Elbert, S. E., Panitch, A. & Hubbell, J. A. Development of growth factor fusion proteins for cell-triggered drug delivery. FASEB J.15, 1300–1302 (2001). ArticleCAS Google Scholar
Schmoekel, H. G. et al. Bone repair with a form of BMP-2 engineered for incorporation into fibrin cell ingrowth matrices. Biotechnol. Bioeng.89, 253–262 (2005). ArticleCAS Google Scholar
BCC Research Advanced Drug Delivery Systems: Technologies and Global Markets (2011); http://www.bccresearch.com
Centers for Disease Control and Prevention (CDC) Number of All-listed Procedures for Discharges from Short-Stay Hospitals, by Procedure Category and Sex: United States, 2010. (2011); available via http://go.nature.com/Xu3rNU
Moses, J. W. et al. Sirolimus-eluting stents versus standard stents in patients with stenosis in a native coronary artery. New Engl. J. Med.349, 1315–1323 (2003). ArticleCAS Google Scholar
Stone, G. W. et al. A polymer-based, paclitaxel-eluting stent in patients with coronary artery disease. New Engl. J. Med.350, 221–231 (2004). ArticleCAS Google Scholar
Hwang, C. W., Wu, D. & Edelman, E. R. Physiological transport forces govern drug distribution for stent-based delivery. Circulation104, 600–605 (2001). ArticleCAS Google Scholar
Burt, H. M. & Hunter, W. L. Drug-eluting stents: A multidisciplinary success story. Adv. Drug Deliv. Rev.58, 350–357 (2006). ArticleCAS Google Scholar
Stefanini, G. G. et al. Long-term clinical outcomes of biodegradable polymer biolimus-eluting stents versus durable polymer sirolimus-eluting stents in patients with coronary artery disease (LEADERS): 4 year follow-up of a randomised non-inferiority trial. Lancet378, 1940–1948 (2011). ArticleCAS Google Scholar
Byrne, R. A. et al. Biodegradable polymer versus permanent polymer drug-eluting stents and everolimus- versus sirolimus-eluting stents in patients with coronary artery disease: 3-year outcomes from a randomized clinical trial. J. Am. Coll. Cardiol.58, 1325–1331 (2011). Article Google Scholar
Joner, M. et al. Pathology of drug-eluting stents in humans: Delayed healing and late thrombotic risk. J. Am. Coll. Cardiol.48, 193–202 (2006). Article Google Scholar
Dudek, D. et al. Four-year clinical follow-up of the ABSORB everolimus-eluting bioresorbable vascular scaffold in patients with de novo coronary artery disease: the ABSORB trial. EuroIntervention7, 1060–1061 (2012). Article Google Scholar
Wieneke, H. et al. Synergistic effects of a novel nanoporous stent coating and tacrolimus on intima proliferation in rabbits. Catheter Cardiovasc. Interv.60, 399–407 (2003). Article Google Scholar
Kollum, M. et al. Particle debris from a nanoporous stent coating obscures potential antiproliferative effects of tacrolimus-eluting stents in a porcine model of restenosis. Catheter Cardiovasc. Interv.64, 85–90 (2005). Article Google Scholar
Tang, C. et al. The impact of vascular endothelial growth factor-transfected human endothelial cells on endothelialization and restenosis of stainless steel stents. J. Vasc. Surg.53, 461–471 (2011). Article Google Scholar
Boden, S. D., Zdeblick, T. A., Sandhu, H. S. & Heim, S. E. The use of rhBMP-2 in interbody fusion cages: Definitive evidence of osteoinduction in humans. A preliminary report. Spine25, 376–381 (2000). ArticleCAS Google Scholar
Govender, S. et al. Recombinant human bone morphogenetic protein-2 for treatment of open tibial fractures: A prospective, controlled, randomized study of four hundred and fifty patients. J. Bone Joint Surg. Am.84, 2123–2134 (2002). Article Google Scholar
McKay, W. F., Peckham, S. M. & Badura, J. M. A comprehensive clinical review of recombinant human bone morphogenetic protein-2 (INFUSE® Bone Graft). Int. Orthop.31, 729–734 (2007). Article Google Scholar
White, A. P. et al. Clinical applications of BMP-7/OP-1 in fractures, nonunions and spinal fusion. Int. Orthop.31, 735–741 (2007). Article Google Scholar
Carragee, E. J., Hurwitz, E. L. & Weiner, B. K. A critical review of recombinant human bone morphogenetic protein-2 trials in spinal surgery: Emerging safety concerns and lessons learned. Spine J.11, 471–491 (2011). Article Google Scholar
Simmons, C. A., Alsberg, E., Hsiong, S., Kim, W. J. & Mooney, D. J. Dual growth factor delivery and controlled scaffold degradation enhance in vivo bone formation by transplanted bone marrow stromal cells. Bone35, 562–569 (2004). ArticleCAS Google Scholar
Hosseinkhani, H., Hosseinkhani, M., Khademhosseini, A. & Kobayashi, H. Bone regeneration through controlled release of bone morphogenetic protein-2 from 3-D tissue engineered nano-scaffold. J. Control. Release117, 380–386 (2007). ArticleCAS Google Scholar
Yamamoto, M., Takahashi, Y. & Tabata, Y. Controlled release by biodegradable hydrogels enhances the ectopic bone formation of bone morphogenetic protein. Biomaterials24, 4375–4383 (2003). ArticleCAS Google Scholar
Turing, A. M. The chemical basis of morphogenesis. Phil. Trans. R. Soc. Lond. B641, 33–72 (1952). Google Scholar
Yuen, W. W., Du, N. R., Chan, C. H., Silva, E. A. & Mooney, D. J. Mimicking nature by codelivery of stimulant and inhibitor to create temporally stable and spatially restricted angiogenic zones. Proc. Natl Acad. Sci. USA107, 17933–17938 (2010). ArticleCAS Google Scholar
Bragdon, C. R., Jasty, M., Greene, M., Rubash, H. E. & Harris, W. H. Biologic fixation of total hip implants. Insights gained from a series of canine studies. J. Bone Joint Surg. Am.86-A Suppl 2, 105–117 (2004). Article Google Scholar
Simion, M. et al. Vertical ridge augmentation using an equine block infused with recombinant human platelet-derived growth factor-BB: A histologic study in a canine model. Int. J. Periodont. Restor. Dent.29, 245–255 (2009). Google Scholar
Simion, M., Rocchietta, I., Kim, D., Nevins, M. & Fiorellini, J. Vertical ridge augmentation by means of deproteinized bovine bone block and recombinant human platelet-derived growth factor-BB: A histologic study in a dog model. Int. J. Periodont. Restor. Dent.26, 415–423 (2006). Google Scholar
Jaklenec, A., Stamp, A., Deweerd, E., Sherwin, A. & Langer, R. Progress in the tissue engineering and stem cell industry: “Are we there yet?” Tissue Eng. B Rev.18, 155–166 (2012). Article Google Scholar
Mooney, D. J. & Vandenburgh, H. Cell delivery mechanisms for tissue repair. Cell Stem Cell2, 205–213 (2008). ArticleCAS Google Scholar
Hofmann, M. et al. Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation111, 2198–2202 (2005). Article Google Scholar
Toma, C. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation105, 93–98 (2002). Article Google Scholar
Fisher, R. A. & Strom, S. C. Human hepatocyte transplantation: Worldwide results. Transplantation82, 441–449 (2006). Article Google Scholar
Kim, B. S., Baez, C. E. & Atala, A. Biomaterials for tissue engineering. World J. Urol.18, 2–9 (2000). ArticleCAS Google Scholar
Malafaya, P. B., Silva, G. A. & Reis, R. L. Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Adv. Drug Deliv. Rev.59, 207–233 (2007). ArticleCAS Google Scholar
Sittinger, M., Hutmacher, D. W. & Risbud, M. V. Current strategies for cell delivery in cartilage and bone regeneration. Curr. Opin. Biotechnol.15, 411–418 (2004). ArticleCAS Google Scholar
Chastain, S. R., Kundu, A. K., Dhar, S., Calvert, J. W. & Putnam, A. J. Adhesion of mesenchymal stem cells to polymer scaffolds occurs via distinct ECM ligands and controls their osteogenic differentiation. J. Biomed. Mater. Res.78, 73–85 (2006). ArticleCAS Google Scholar
Cooper, M. L. et al. In vivo optimization of a living dermal substitute employing cultured human fibroblasts on a biodegradable polyglycolic acid or polyglactin mesh. Biomaterials12, 243–248 (1991). ArticleCAS Google Scholar
Mooney, D. J. et al. Biodegradable sponges for hepatocyte transplantation. J. Biomed. Mater. Res.29, 959–965 (1995). ArticleCAS Google Scholar
Cao, Y., Vacanti, J. P., Paige, K. T., Upton, J. & Vacanti, C. A. Transplantation of chondrocytes utilizing a polymer-cell construct to produce tissue-engineered cartilage in the shape of a human ear. Plast. Reconstr. Surg.100, 297–302 (1997). ArticleCAS Google Scholar
Barrera, D. A., Zylstra, E., Lansbury, P. T. & Langer, R. Synthesis and RGD peptide modification of a new biodegradable copolymer: poly(lactic acid-co-lysine). J. Am. Chem. Soc.115, 11010–11011 (1993). ArticleCAS Google Scholar
Hersel, U., Dahmen, C. & Kessler, H. RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials24, 31–31 (2003). ArticleCAS Google Scholar
Rowley, J. A., Madlambayan, G. & Mooney, D. J. Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials20, 45–53 (1999). ArticleCAS Google Scholar
Alsberg, E. Engineering growing tissues. Proc. Natl Acad. Sci. USA99, 12025–12030 (2002). ArticleCAS Google Scholar
Alsberg, E., Anderson, K. W., Albeiruti, A., Franceschi, R. T. & Mooney, D. J. Cell-interactive alginate hydrogels for bone tissue engineering. J. Dent. Res.80, 2025–2029 (2001). ArticleCAS Google Scholar
Harris, L., Kim, B. & Mooney, D. Open pore biodegradable matrices formed with gas foaming. J. Biomed. Mater. Res.42, 396–402 (1998). ArticleCAS Google Scholar
Mooney, D. J., Baldwin, D. F., Suh, N. P., Vacanti, J. P. & Langer, R. Novel approach to fabricate porous sponges of poly(D,L-lactic-co-glycolic acid) without the use of organic solvents. Biomaterials17, 1417–1422 (1996). ArticleCAS Google Scholar
O'Brien, F. J., Harley, B. A., Yannas, I. V. & Gibson, L. J. The effect of pore size on cell adhesion in collagen–GAG scaffolds. Biomaterials26, 433–441 (2005). ArticleCAS Google Scholar
Mikos, A. G., Sarakinos, G., Leite, S. M., Vacanti, J. P. & Langer, R. Laminated three-dimensional biodegradable foams for use in tissue engineering. Biomaterials14, 323–330 (1993). ArticleCAS Google Scholar
Mikos, A. G. et al. Preparation of poly(glycolic acid) bonded fiber structures for cell attachment and transplantation. J. Biomed. Mater. Res.27, 183–189 (1993). ArticleCAS Google Scholar
Giordano, R. A. et al. Mechanical properties of dense polylactic acid structures fabricated by three dimensional printing. J. Biomater. Sci. Polym. Edn8, 63–75 (1997). Article Google Scholar
Mironov, V., Boland, T., Trusk, T., Forgacs, G. & Markwald, R. R. Organ printing: Computer-aided jet-based 3D tissue engineering. Trends Biotechnol.21, 157–161 (2003). ArticleCAS Google Scholar
Compton, C. C., Butler, C. E., Yannas, I. V., Warland, G. & Orgill, D. P. Organized skin structure is regenerated in vivo from collagen–GAG Matrices seeded with autologous keratinocytes. J. Investig. Dermatol.110, 908–916 (1998). ArticleCAS Google Scholar
Atala, A., Oberpenning, F., Meng, J. & Yoo, J. J. De novo reconstitution of a functional mammalian urinary bladder by tissue engineering. Nature Biotechnol.17, 149–155 (1999). ArticleCAS Google Scholar
Nicodemus, G. D. & Bryant, S. J. Cell encapsulation in biodegradable hydrogels for tissue engineering applications. Tissue Eng. B Rev.14, 149–165 (2008). ArticleCAS Google Scholar
Boontheekul, T., Kong, H. & Mooney, D. Controlling alginate gel degradation utilizing partial oxidation and bimodal molecular weight distribution. Biomaterials26, 2455–2465 (2005). ArticleCAS Google Scholar
O'Sullivan, E. S., Vegas, A., Anderson, D. G. & Weir, G. C. Islets transplanted in immunoisolation devices: a review of the progress and the challenges that remain. Endocr. Rev.32, 827–844 (2011). ArticleCAS Google Scholar
Sun, Y., Ma, X., Zhou, D., Vacek, I. & Sun, A. M. Normalization of diabetes in spontaneously diabetic cynomologus monkeys by xenografts of microencapsulated porcine islets without immunosuppression. J. Clin. Investig.98, 1417–1422 (1996). ArticleCAS Google Scholar
Chang, T. M. S. Artificial liver support based on artificial cells with emphasis on encapsulated hepatocytes. Artif. Organs16, 71–74 (2008). Article Google Scholar
Lutolf, M. P., Gilbert, P. M. & Blau, H. M. Designing materials to direct stem-cell fate. Nature462, 433–441 (2009). ArticleCAS Google Scholar
Brown, K. V. et al. Improving bone formation in a rat femur segmental defect by controlling bone morphogenetic protein-2 release. Tissue Eng. A17, 1735–1746 (2011). ArticleCAS Google Scholar
Kolambkar, Y. M. et al. An alginate-based hybrid system for growth factor delivery in the functional repair of large bone defects. Biomaterials32, 65–74 (2011). ArticleCAS Google Scholar
Lucas, P. A. et al. Ectopic induction of cartilage and bone by water-soluble proteins from bovine bone using a polyanhydride delivery vehicle. J. Biomed. Mater. Res.24, 901–911 (1990). ArticleCAS Google Scholar
Hedberg, E. L. et al. Effect of varied release kinetics of the osteogenic thrombin peptide TP508 from biodegradable, polymeric scaffolds on bone formation in vivo. J. Biomed. Mater. Res.72A, 343–353 (2005). ArticleCAS Google Scholar
Loeser, R. F. Aging and osteoarthritis: the role of chondrocyte senescence and aging changes in the cartilage matrix. Osteoarthr. Cartilage17, 971–979 (2009). ArticleCAS Google Scholar
Steadman, J. R. et al. Outcomes of microfracture for traumatic chondral defects of the knee: Average 11-year follow-up. Arthroscopy19, 477–484 (2003). Article Google Scholar
Breinan, H. A., Martin, S. D., Hsu, H.-P. & Spector, M. Healing of canine articular cartilage defects treated with microfracture, a type-II collagen matrix, or cultured autologous chondrocytes. J. Orthop. Res.18, 781–789 (2000). ArticleCAS Google Scholar
Nöth, U., Steinert, A. F. & Tuan, R. S. Technology insight: adult mesenchymal stem cells for osteoarthritis therapy. Nature Clin. Pract. Rheumatol.4, 371–380 (2008). ArticleCAS Google Scholar
Gille, J. et al. Mid-term results of autologous matrix-induced chondrogenesis for treatment of focal cartilage defects in the knee. Knee Surg. Sports Traumatol. Arthrosc.18, 1456–1464 (2010). ArticleCAS Google Scholar
Lee, C. H. et al. Regeneration of the articular surface of the rabbit synovial joint by cell homing: A proof of concept study. Lancet376, 440–448 (2010). ArticleCAS Google Scholar
Huang, Q., Goh, J. C. H., Hutmacher, D. W. & Lee, E. H. In vivo mesenchymal cell recruitment by a scaffold loaded with transforming growth factor β1 and the potential for in situ chondrogenesis. Tissue Eng.8, 469–482 (2002). ArticleCAS Google Scholar
Driver, V. R., Fabbi, M., Lavery, L. A. & Gibbons, G. The costs of diabetic foot: the economic case for the limb salvage team. J. Am. Podiat. Med. Assoc.100, 335–341 (2010). Article Google Scholar
Lynch, S. E., Nixon, J. C., Colvin, R. B. & Antoniades, H. N. Role of platelet-derived growth factor in wound healing: Synergistic effects with other growth factors. Proc. Natl Acad. Sci. USA84, 7696–7700 (1987). ArticleCAS Google Scholar
Metcalfe, A. D. & Ferguson, M. W. J. Tissue engineering of replacement skin: the crossroads of biomaterials, wound healing, embryonic development, stem cells and regeneration. J. R. Soc. Interface4, 413–437 (2007). ArticleCAS Google Scholar
Yannas, I. V. & Burke, J. F. Design of an artificial skin. I. Basic design principles. J. Biomed. Mater. Res.14, 65–81 (1980). ArticleCAS Google Scholar
Pandit, A., Ashar, R. & Feldman, D. The effect of TGF-beta delivered through a collagen scaffold on wound healing. J. Investig. Surg.12, 89–100 (1999). ArticleCAS Google Scholar
Kawai, K., Suzuki, S., Tabata, Y., Ikada, Y. & Nishimura, Y. Accelerated tissue regeneration through incorporation of basic fibroblast growth factor-impregnated gelatin microspheres into artificial dermis. Biomaterials21, 489–499 (2000). ArticleCAS Google Scholar
Gu, D. Adenovirus encoding human platelet-derived growth factor-B delivered in collagen exhibits safety, biodistribution, and immunogenicity profiles favorable for clinical use. Mol. Ther.9, 699–711 (2004). ArticleCAS Google Scholar
Huang, Y-C., Kaigler, D., Rice, K. G., Krebsbach, P. H. & Mooney, D. J. Combined angiogenic and osteogenic factor delivery enhances bone marrow stromal cell-driven bone regeneration. J. Bone Miner. Res.20, 848–857 (2004). ArticleCAS Google Scholar
Kofron, M. D. & Laurencin, C. T. Bone tissue engineering by gene delivery. Adv. Drug Deliv. Rev.58, 555–576 (2006). ArticleCAS Google Scholar
Peterson, B. et al. Healing of critically sized femoral defects, using genetically modified mesenchymal stem cells from human adipose tissue. Tissue Eng.11, 120–129 (2005). ArticleCAS Google Scholar
Sugiyama, O. et al. Lentivirus-mediated gene transfer induces long-term transgene expression of BMP-2 in vitro and new bone formation in vivo. Mol. Ther.11, 390–398 (2005). ArticleCAS Google Scholar
Geiger, F. et al. VEGF producing bone marrow stromal cells (BMSC) enhance vascularization and resorption of a natural coral bone substitute. Bone41, 516–522 (2007). ArticleCAS Google Scholar
Jabbarzadeh, E. et al. Induction of angiogenesis in tissue-engineered scaffolds designed for bone repair: A combined gene therapy–cell transplantation approach. Proc. Natl Acad. Sci. USA105, 11099–11104 (2008). ArticleCAS Google Scholar
Peng, H. et al. Synergistic enhancement of bone formation and healing by stem cell-expressed VEGF and bone morphogenetic protein-4. J. Clin. Investig.110, 751–759 (2002). ArticleCAS Google Scholar
Blumenthal, B. et al. Polyurethane scaffolds seeded with genetically engineered skeletal myoblasts: A promising tool to regenerate myocardial function. Artif. Organs34, E46–E54 (2010). ArticleCAS Google Scholar
Egaña, J. T. et al. Use of human mesenchymal cells to improve vascularization in a mouse model for scaffold-based dermal regeneration. Tissue Eng. A15, 1191–1200 (2008). Article Google Scholar
Park, H., Temenoff, J. S., Tabata, Y., Caplan, A. I. & Mikos, A. G. Injectable biodegradable hydrogel composites for rabbit marrow mesenchymal stem cell and growth factor delivery for cartilage tissue engineering. Biomaterials28, 3217–3227 (2007). ArticleCAS Google Scholar
Koffler, J. et al. Improved vascular organization enhances functional integration of engineered skeletal muscle grafts. Proc. Natl Acad. Sci. USA108, 14789–14794 (2011). ArticleCAS Google Scholar
Kneser, U. et al. Long-term differentiated function of heterotopically transplanted hepatocytes on three-dimensional polymer matrices. J. Biomed. Mater. Res.47, 494–503 (1999). ArticleCAS Google Scholar
Bruns, H. et al. Injectable liver: A novel approach using fibrin gel as a matrix for culture and intrahepatic transplantation of hepatocytes. Tissue Eng.11, 1718–1726 (2005). ArticleCAS Google Scholar
Vandenburgh, H. et al. Tissue-engineered skeletal muscle organoids for reversible gene therapy. Hum. Gene Ther.7, 2195–2200 (1996). ArticleCAS Google Scholar
Borselli, C., Cezar, C. A., Shvartsman, D., Vandenburgh, H. H. & Mooney, D. J. The role of multifunctional delivery scaffold in the ability of cultured myoblasts to promote muscle regeneration. Biomaterials32, 8905–8914 (2011). ArticleCAS Google Scholar
Silva, E. A., Kim, E-S., Kong, H. J. & Mooney, D. J. Material-based deployment enhances efficacy of endothelial progenitor cells. Proc. Natl Acad. Sci. USA105, 14347–14352 (2008). ArticleCAS Google Scholar
Ali, O. A., Huebsch, N., Cao, L., Dranoff, G. & Mooney, D. J. Infection-mimicking materials to program dendritic cells in situ. Nature Mater.8, 151–158 (2009). ArticleCAS Google Scholar
Ali, O. A., Emerich, D., Dranoff, G. & Mooney, D. J. In situ regulation of DC subsets and T cells mediates tumor regression in mice. Sci. Transl. Med.1, 8ra19 (2009). ArticleCAS Google Scholar
Kong, H., Lee, K. & Mooney, D. Decoupling the dependence of rheological/mechanical properties of hydrogels from solids concentration. Polymer43, 6239–6246 (2002). ArticleCAS Google Scholar
Chenite, A. et al. Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials21, 2155–2161 (2000). ArticleCAS Google Scholar
Liu, X., Jin, X. & Ma, P. X. Nanofibrous hollow microspheres self-assembled from star-shaped polymers as injectable cell carriers for knee repair. Nature Mater.10, 398–406 (2011). ArticleCAS Google Scholar