Detection of heteromerization of more than two proteins by sequential BRET-FRET (original) (raw)
Gutkind, J.S. The pathways connecting G protein–coupled receptors to the nucleus through divergent mitogen-activated protein kinase cascades. J. Biol. Chem.273, 1839–1842 (1998). ArticleCAS Google Scholar
Pierce, K.L., Luttrell, L.M. & Lefkowitz, R.J. New mechanisms in heptahelical receptor signaling to mitogen activated protein kinase cascades. Oncogene20, 1532–1539 (2001). ArticleCAS Google Scholar
Xia, Y. et al. Analyzing cellular biochemistry in terms of molecular networks. Annu. Rev. Biochem.73, 1051–1087 (2004). Article Google Scholar
Agnati, L.F., Ferré, S., Lluis, C., Franco, R. & Fuxe, K. Molecular mechanisms and therapeutical implications of intramembrane receptor/receptor interactions among heptahelical receptors with examples from the striatopallidal GABA neurons. Pharmacol. Rev.55, 509–550 (2003). ArticleCAS Google Scholar
Franco, R. et al. Regulation of heptaspanning-membrane-receptor function by dimerization and clustering. Trends Biochem. Sci.28, 238–243 (2003). ArticleCAS Google Scholar
Bockaert, J., Marin, P., Dumuis, A. & Fagni, L. The 'magic tail' of G protein–coupled receptors: an anchorage for functional protein networks. FEBS Lett.546, 65–72 (2003). ArticleCAS Google Scholar
Terrillon, S. & Bouvier, M. Roles of G-protein-coupled receptor dimerization. EMBO Rep.5, 30–34 (2004). ArticleCAS Google Scholar
Hall, R.A. & Lefkowitz, R.J. Regulation of G protein–coupled receptor signaling by scaffold proteins. Circ. Res.91, 672–680 (2002). ArticleCAS Google Scholar
Miller, W.E. & Lefkowitz, R.J. Expanding roles for beta-arrestins as scaffolds and adapters in GPCR signaling and trafficking. Curr. Opin. Cell Biol.13, 139–145 (2001). ArticleCAS Google Scholar
Angers, S. et al. Detection of beta2-adrenergic receptor dimerization in living cells using bioluminescence resonance energy transfer (BRET). Proc. Natl. Acad. Sci. USA97, 3684–3689 (2000). CASPubMed Google Scholar
Overton, M.C. & Blumer, K.J.G. Protein coupled receptors function as oligomers in vivo. Curr. Biol.10, 341–344 (2000). ArticleCAS Google Scholar
Bouvier, M. Oligomerization of G protein–coupled transmitter receptors. Nat. Rev. Neurosci.2, 274–286 (2001). ArticleCAS Google Scholar
Milligan, G. & Bouvier, M. Methods to monitor the quaternary structure of G protein–coupled receptors. FEBS J.272, 2914–2925 (2005). ArticleCAS Google Scholar
Pfleger, K.D. & Eidne, K.A. Monitoring the formation of dynamic G protein–coupled receptor-protein complexes in living cells. Biochem. J.385, 625–637 (2005). ArticleCAS Google Scholar
Pfleger, K.D. & Eidne, K.A. Illuminating insights into protein-protein interactions using bioluminescence resonance energy transfer. Nat. Methods3, 165–174 (2006). ArticleCAS Google Scholar
Pfleger, K.D. et al. Extended bioluminescence resonance energy transfer (eBRET) for monitoring prolonged protein-protein interactions in live cells. Cell. Signal.18, 1664–1670 (2006). ArticleCAS Google Scholar
James, J.R. et al. A rigorous experimental framework for detecting protein oligomerization using bioluminescence resonance energy transfer. Nat. Methods3, 1001–1006 (2006). ArticleCAS Google Scholar
Zimmermann, T., Rietdorf, J., Girod, A., Georget, V. & Pepperkok, R. Spectral imaging and linear un-mixing enables improved FRET efficiency with a novel GFP2-YFP FRET pair. FEBS Lett.531, 245–249 (2002). ArticleCAS Google Scholar
Peleg, S. et al. G(alpha)(i) controls the gating of the G protein–activated K+ channel, GIRK. Neuron33, 87–99 (2002). ArticleCAS Google Scholar
Bünemann, M., Frank, M. & Lohse, M.J. Gi protein activation in intact cells involves subunit rearrangement rather than dissociation. Proc. Natl. Acad. Sci. USA100, 16077–16082 (2003). Article Google Scholar
Galés, C. et al. Real-time monitoring of receptor and G-protein interactions in living cells. Nat. Methods2, 177–184 (2005). Article Google Scholar
Evanko, D.S. et al. Loss of association between activated Gαq and Gβγ disrupts receptor-dependent and receptor-independent signaling. Cell. Signal.17, 1218–1228 (2005). ArticleCAS Google Scholar
Frank, M. et al. G protein activation without subunit dissociation depends on a Gi-specific region. J. Biol. Chem.280, 24584–24590 (2005). ArticleCAS Google Scholar
Adjobo-Hermans, M.J.W., Goedhart, J. & Gadella, T.W.J., Jr. Plant G protein heterotrimers require dual lipidation motifs of Gα and Gγ and do not dissociate upon activation. J. Cell Sci.119, 5087–5097 (2006). ArticleCAS Google Scholar
Tang, W. et al. Gβγ inhibits Gα GTPase-activating proteins by inhibition of Gα−GTP binding during stimulation by receptor. J. Biol. Chem.281, 4746–4753 (2006). ArticleCAS Google Scholar
Canals, M. et al. Adenosine A2A-dopamine D2 receptor-receptor heteromerization. Qualitative and quantitative assessment by fluorescence and bioluminescence resonance energy transfer. J. Biol. Chem.278, 46741–46749 (2003). ArticleCAS Google Scholar
Ciruela, F. et al. Combining mass spectrometry and pull-down techniques for the study of receptor heteromerization. Direct epitope-epitope electrostatic interactions between adenosine A2A and dopamine D2 receptors. Anal. Chem.76, 5354–5363 (2004). ArticleCAS Google Scholar
Carriba, P. et al. Striatal adenosine A2A and cannabinoid CB1 receptors form functional heteromeric complexes that mediate the motor effects of cannabinoids. Neuropsychopharmacology32, 2249–2259 (2007). ArticleCAS Google Scholar
Kearn, C.S., Blake-Palmer, K., Daniel, E., Mackie, K. & Glass, M. Concurrent stimulation of cannabinoid CB1 and dopamine D2 receptors enhances heterodimer formation: a mechanism for receptor cross-talk? Mol. Pharmacol.67, 1697–1704 (2005). ArticleCAS Google Scholar
Prinz, A., Diskar, M. & Herberg, F.W. Application of bioluminescence resonance energy transfer (BRET) for biomolecular interaction studies. ChemBioChem7, 1007–1012 (2006). ArticleCAS Google Scholar