Site-specific labeling of cell surface proteins with biophysical probes using biotin ligase (original) (raw)

References

  1. Keppler, A., Pick, H., Arrivoli, C., Vogel, H. & Johnsson, K. Labeling of fusion proteins with synthetic fluorophores in live cells. Proc. Natl. Acad. Sci. USA 101, 9955–9959 (2004).
    Article CAS PubMed PubMed Central Google Scholar
  2. Miller, L.W., Sable, J., Goelet, P., Sheetz, M.P. & Cornish, V.W. Methotrexate conjugates: a molecular in vivo protein tag. Angew. Chem. Int. Edn. Engl. 43, 1672–1675 (2004).
    Article CAS Google Scholar
  3. Marks, K.M., Braun, P.D. & Nolan, G.P. A general approach for chemical labeling and rapid, spatially controlled protein inactivation. Proc. Natl. Acad. Sci. USA 101, 9982–9987 (2004).
    Article CAS PubMed PubMed Central Google Scholar
  4. George, N., Pick, H., Vogel, H., Johnsson, N. & Johnsson, K. Specific labeling of cell surface proteins with chemically diverse compounds. J. Am. Chem. Soc. 126, 8896–8897 (2004).
    Article CAS PubMed Google Scholar
  5. Yin, J., Liu, F., Li, X. & Walsh, C.T. Labeling proteins with small molecules by site-specific posttranslational modification. J. Am. Chem. Soc. 126, 7754–7755 (2004).
    Article CAS PubMed Google Scholar
  6. Adams, S.R. et al. New biarsenical ligands and tetracysteine motifs for protein labeling in vitro and in vivo: Synthesis and biological applications. J. Am. Chem. Soc. 124, 6063–6076 (2002).
    Article CAS PubMed Google Scholar
  7. Marks, K.M., Rosinov, M. & Nolan, G.P. In vivo targeting of organic calcium sensors via genetically selected peptides. Chem. Biol. 11, 347–356 (2004).
    Article CAS PubMed Google Scholar
  8. Guignet, E.G., Hovius, R. & Vogel, H. Reversible site-selective labeling of membrane proteins in live cells. Nat. Biotechnol. 22, 440–444 (2004).
    Article CAS PubMed Google Scholar
  9. Chen, I. & Ting, A.Y. Site-specific labeling of proteins with small molecules in live cells. Curr. Opin. Biotech. (in the press).
  10. Beckett, D., Kovaleva, E. & Schatz, P.J. A minimal peptide substrate in biotin holoenzyme synthetase-catalyzed biotinylation. Protein Sci. 8, 921–929 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  11. de Boer, E. et al. Efficient biotinylation and single-step purification of tagged transcription factors in mammalian cells and transgenic mice. Proc. Natl. Acad. Sci. USA 100, 7480–7485 (2003).
    Article CAS PubMed PubMed Central Google Scholar
  12. Mahal, L.K., Yarema, K.J. & Bertozzi, C.R. Engineering chemical reactivity on cell surfaces through oligosaccharide biosynthesis. Science 276, 1125–1128 (1997).
    Article CAS PubMed Google Scholar
  13. Baraldi, P.G. et al. Synthesis of sulfur-containing carbaprostacyclin analogs. Gazz. Chim. Ital. 114, 177–183 (1984).
    CAS Google Scholar
  14. Lavielle, S., Bory, S., Moreau, B., Luche, M.J. & Marquet, A. Total synthesis of biotin based on stereoselective alkylation of sulfoxides. J. Am. Chem. Soc. 100, 1558–1563 (1978).
    Article CAS Google Scholar
  15. Chapman-Smith, A., Morris, T.W., Wallace, J.C. & Cronan, J.E., Jr. Molecular recognition in a post-translational modification of exceptional specificity. Mutants of the biotinylated domain of acetyl-CoA carboxylase defective in recognition by biotin protein ligase. J. Biol. Chem. 274, 1449–1457 (1999).
    Article CAS PubMed Google Scholar
  16. Nauman, D.A. & Bertozzi, C.R. Kinetic parameters for small-molecule drug delivery by covalent cell surface targeting. Biochim. Biophys. Acta 1568, 147–154 (2001).
    Article CAS PubMed Google Scholar
  17. Lax, I. et al. Epidermal growth factor (EGF) induces oligomerization of soluble, extracellular, ligand-binding domain of EGF receptor. A low resolution projection structure of the ligand-binding domain. J. Biol. Chem. 266, 13828–13833 (1991).
    CAS PubMed Google Scholar
  18. Brock, R., Hamelers, I.H. & Jovin, T.M. Comparison of fixation protocols for adherent cultured cells applied to a GFP fusion protein of the epidermal growth factor receptor. Cytometry 35, 353–362 (1999).
    Article CAS PubMed Google Scholar
  19. Reynolds, A.R., Tischer, C., Verveer, P.J., Rocks, O. & Bastiaens, P.I. EGFR activation coupled to inhibition of tyrosine phosphatases causes lateral signal propagation. Nat. Cell Biol. 5, 447–453 (2003).
    Article CAS PubMed Google Scholar
  20. Zhang, Z. et al. A new strategy for the site-specific modification of proteins in vivo. Biochemistry 42, 6735–6746 (2003).
    CAS PubMed Google Scholar
  21. Huff, T. et al. Thymosin β(4) serves as a glutaminyl substrate of transglutaminase. Labeling with fluorescent dansylcadaverine does not abolish interaction with G-actin. FEBS Lett 464, 14–20 (1999).
    Article CAS PubMed Google Scholar
  22. Dutton, A. & Singer, S.J. Crosslinking and labeling of membrane proteins by transglutaminase-catalyzed reactions. Proc. Natl. Acad. Sci. USA 72, 2568–2571 (1975).
    Article CAS PubMed PubMed Central Google Scholar
  23. Mao, H., Hart, S.A., Schink, A. & Pollok, B.A. Sortase-mediated protein ligation: a new method for protein engineering. J. Am. Chem. Soc. 126, 2670–2671 (2004).
    Article CAS PubMed Google Scholar

Download references