Colonic transit time is related to bacterial metabolism and mucosal turnover in the gut (original) (raw)
References
Le Chatelier, E. et al. Richness of human gut microbiome correlates with metabolic markers. Nature500, 541–546 (2013). Article Google Scholar
Lozupone, C. A., Stombaugh, J. I., Gordon, J. I., Jansson, J. K. & Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature489, 220–230 (2012). Article Google Scholar
Vandeputte, D. et al. Stool consistency is strongly associated with gut microbiota richness and composition, enterotypes and bacterial growth rates. Gut65, 57–62 (2015). Article Google Scholar
Tigchelaar, E. F. et al. Gut microbiota composition associated with stool consistency. Gut65, 540–542 (2016). Article Google Scholar
Wang, Y. T. et al. Regional gastrointestinal transit and pH studied in 21 healthy volunteers using the wireless motility capsule: influence of age, gender, study country and testing protocol. Aliment. Pharmacol. Ther.42, 761–772 (2015). Article Google Scholar
Nyangale, E. P., Mottram, D. S. & Gibson, G. R. Gut microbial activity, implications for health and disease: the potential role of metabolite analysis. J. Proteome Res.11, 5573–5585 (2012). Article Google Scholar
Tremaroli, V. & Bäckhed, F. Functional interactions between the gut microbiota and host metabolism. Nature489, 242–249 (2012). Article Google Scholar
Davila, A.-M. et al. Intestinal luminal nitrogen metabolism: role of the gut microbiota and consequences for the host. Pharmacol. Res.68, 95–107 (2013). Article Google Scholar
Russell, W. R., Hoyles, L., Flint, H. J. & Dumas, M.-E. Colonic bacterial metabolites and human health. Curr. Opin. Microbiol.16, 246–254 (2013). Article Google Scholar
Andriamihaja, M. et al. The deleterious metabolic and genotoxic effects of the bacterial metabolite p-cresol on colonic epithelial cells. Free Radic. Biol. Med.85, 219–227 (2015). Article Google Scholar
Louis, P., Hold, G. L. & Flint, H. J. The gut microbiota, bacterial metabolites and colorectal cancer. Nature Rev. Microbiol.12, 661–672 (2014). Article Google Scholar
Shafi, T. et al. Free levels of selected organic solutes and cardiovascular morbidity and mortality in hemodialysis patients: results from the retained organic solutes and clinical outcomes (ROSCO) investigators. PLoS ONE10, e0126048 (2015). Article Google Scholar
Gabriele, S. et al. Urinary p-cresol is elevated in young French children with autism spectrum disorder: a replication study. Biomarkers19, 463–470 (2014). Article Google Scholar
Ibrügger, S. et al. Two randomized cross-over trials assessing the impact of dietary gluten or wholegrain on the gut microbiome and host metabolic health. J. Clin. Trials4, 1000178 (2014). Article Google Scholar
Falony, G. et al. Population-level analysis of gut microbiome variation. Science352, 560–564 (2016). Article Google Scholar
Arumugam, M. et al. Enterotypes of the human gut microbiome. Nature473, 174–180 (2011). Article Google Scholar
Roager, H. M., Licht, T. R., Poulsen, S. K., Larsen, T. M. & Bahl, M. I. Microbial enterotypes, inferred by the prevotella-to-bacteroides ratio, remained stable during a 6-month randomized controlled diet intervention with the new nordic diet. Appl. Environ. Microbiol.80, 1142–1149 (2014). Article Google Scholar
Claus, S. P. et al. Systemic multicompartmental effects of the gut microbiome on mouse metabolic phenotypes. Mol. Syst. Biol.4, 219 (2008). Article Google Scholar
He, X. & Slupsky, C. M. Metabolic fingerprint of dimethyl sulfone (DMSO2) in microbial-mammalian co-metabolism. J. Proteome Res.13, 5281–5292 (2014). Article Google Scholar
Kilkkinen, A. et al. Use of oral antimicrobials decreases serum enterolactone concentration. Am. J. Epidemiol.155, 472–477 (2002). Article Google Scholar
Topp, H., Sander, G., Heller-Schöch, G. & Schöch, G. Determination of 7-methylguanine, _N_2,_N_2-dimethylguanosine, and pseudouridine in ultrafiltrated serum of healthy adults by high-performance liquid chromatography. Anal. Biochem.161, 49–56 (1987). Article Google Scholar
Topp, H. & Schöch, G. Whole-body degradation rates of transfer-, ribosomal-, and messenger ribonucleic acids and resting metabolic rate in 3- to 18-year-old humans. Pediatr. Res.47, 163–163 (2000). Article Google Scholar
Mirvish, S. S., Medalie, J., Linsell, C. A., Yousuf, E. & Reyad, S. 7-methylguanine and other minor urinary purines: values for normal subjects from Israel, Gaza, and Kenya, and for patients with cancer of various organs or cirrhosis of the liver. Cancer27, 736–743 (1971). Article Google Scholar
Johansson, M. E. V., Larsson, J. M. H. & Hansson, G. C. The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host–microbial interactions. Proc. Natl Acad. Sci. USA108(Suppl), 4659–4665 (2011). ArticleCAS Google Scholar
Barrios, C. et al. Gut-microbiota-metabolite axis in early renal function decline. PLoS ONE10, e0134311 (2015). Article Google Scholar
Pimentel, M. et al. Methane, a gas produced by enteric bacteria, slows intestinal transit and augments small intestinal contractile activity. Am. J. Physiol. Gastrointest. Liver Physiol.290, G1089–G1095 (2006). Article Google Scholar
Soret, R. et al. Short-chain fatty acids regulate the enteric neurons and control gastrointestinal motility in rats. Gastroenterology138, 1772–1782 (2010). Article Google Scholar
Degen, L. P. & Phillips, S. F. How well does stool form reflect colonic transit? Gut39, 109–113 (1996). Article Google Scholar
Macfarlane, G. T., Cummings, J. H., Macfarlane, S. & Gibson, G. R. Influence of retention time on degradation of pancreatic enzymes by human colonic bacteria grown in a 3-stage continuous culture system. J. Appl. Bacteriol.67, 520–527 (1989). Article Google Scholar
Macfarlane, S., Quigley, M., Hopkins, M., Newton, D. F. & Macfarlane, G. Polysaccharide degradation by human intestinal bacteria during growth under multi-substrate limiting conditions in a three-stage continuous culture system. FEMS Microbiol. Ecol.26, 231–243 (1998). Article Google Scholar
Cummings, J. H., Hill, M. J., Bone, E. S., Branch, W. J. & Jenkins, D. J. The effect of meat protein and dietary fiber on colonic function and metabolism. II: Bacterial metabolites in feces and urine. Am. J. Clin. Nutr.32, 2094–2101 (1979). Article Google Scholar
Benus, R. F. J. et al. Association between Faecalibacterium prausnitzii and dietary fibre in colonic fermentation in healthy human subjects. Br. J. Nutr.104, 693–700 (2010). Article Google Scholar
Manach, C., Scalbert, A., Morand, C., Remesy, C. & Jimenez, L. Polyphenols: food sources and bioavailability. Am. J. Clin. Nutr.79, 727–747 (2004). Article Google Scholar
van Duynhoven, J. et al. Metabolic fate of polyphenols in the human superorganism. Proc. Natl Acad. Sci. USA108(Suppl), 4531–4538 (2011). ArticleCAS Google Scholar
Gross, G. et al.In vitro bioconversion of polyphenols from black tea and red wine/grape juice by human intestinal microbiota displays strong interindividual variability. J. Agric. Food Chem.58, 10236–10246 (2010). Article Google Scholar
Bode, L. M. et al.In vivo and in vitro metabolism of trans-resveratrol by human gut microbiota. Am. J. Clin. Nutr.97, 295–309 (2013). Article Google Scholar
Shimotoyodome, A., Meguro, S., Hase, T., Tokimitsu, I. & Sakata, T. Decreased colonic mucus in rats with loperamide-induced constipation. Comp. Biochem. Physiol. A. Mol. Integr. Physiol.126, 203–212 (2000). Article Google Scholar
Toden, S., Bird, A. R., Topping, D. L. & Conlon, M. A. Resistant starch attenuates colonic DNA damage induced by higher dietary protein in rats. Nutr. Cancer51, 45–51 (2005). Article Google Scholar
Ten Bruggencate, S. J. M., Bovee-Oudenhoven, I. M. J., Lettink-Wissink, M. L. G., Katan, M. B. & Van Der Meer, R. Dietary fructo-oligosaccharides and inulin decrease resistance of rats to salmonella: protective role of calcium. Gut53, 530–535 (2004). Article Google Scholar
Rao, J. N. & Wang, J.-Y. in Molecule to Function to Disease (eds Granger, N., Granger, J. & Princeton, N. ) 11–114 (Morgan & Claypool, 2011). Google Scholar
Sakata, T. Effects of indigestible dietary bulk and short chain fatty acids on the tissue weight and epithelial cell proliferation rate of the digestive tract in rats. J. Nutr. Sci. Vitaminol. (Tokyo)32, 355–362 (1986). Article Google Scholar
Goodlad, R. A. et al. Effects of an elemental diet, inert bulk and different types of dietary fibre on the response of the intestinal epithelium to refeeding in the rat and relationship to plasma gastrin, enteroglucagon, and PYY concentrations. Gut28, 171–180 (1987). Article Google Scholar
Lewis, S. J. & Heaton, K. W. Increasing butyrate concentration in the distal colon by accelerating intestinal transit. Gut41, 245–251 (1997). Article Google Scholar
Timmons, J., Chang, E. T., Wang, J.-Y. & Rao, J. N. Polyamines and gut mucosal homeostasis. J. Gastrointest. Dig. Syst.2(Suppl 7), 001 (2012). PubMedPubMed Central Google Scholar
Earle, K. A. et al. Quantitative imaging of gut microbiota spatial organization. Cell Host Microbe18, 478–488 (2015). Article Google Scholar
Guérin, A. et al. Risk of developing colorectal cancer and benign colorectal neoplasm in patients with chronic constipation. Aliment. Pharmacol. Ther.40, 83–92 (2014). Article Google Scholar
Schadt, S., Chen, L.-Z. & Bischoff, D. Evaluation of relative LC/MS response of metabolites to parent drug in LC/nanospray ionization mass spectrometry: potential implications in MIST assessment. J. Mass Spectrom.46, 1281–1286 (2011). Article Google Scholar
McKeown, C., Hisle-Gorman, E., Eide, M., Gorman, G. H. & Nylund, C. M. Association of constipation and fecal incontinence with attention-deficit/hyperactivity disorder. Pediatrics132, e1210-5 (2013). Article Google Scholar
Pang, K. H. & Croaker, G. D. H. Constipation in children with autism and autistic spectrum disorder. Pediatr. Surg. Int.27, 353–358 (2011). Article Google Scholar
Wu, M.-J. et al. Colonic transit time in long-term dialysis patients. Am. J. Kidney Dis.44, 322–327 (2004). Article Google Scholar
Waller, P. A. et al. Dose–response effect of Bifidobacterium lactis HN019 on whole gut transit time and functional gastrointestinal symptoms in adults. Scand. J. Gastroenterol.46, 1057–1064 (2011). Article Google Scholar
Abrahamsson, H. & Antov, S. Accuracy in assessment of colonic transit time with particles: how many markers should be used? Neurogastroenterol. Motil.22, 1164–1169 (2010). Article Google Scholar
Wesolowska-Andersen, A. et al. Choice of bacterial DNA extraction method from fecal material influences community structure as evaluated by metagenomic analysis. Microbiome2, 19 (2014). Article Google Scholar
Godon, J. J., Zumstein, E., Dabert, P., Habouzit, F. & Moletta, R. Molecular microbial diversity of an anaerobic digestor as determined by small-subunit rDNA sequence analysis. Appl. Environ. Microbiol.63, 2802–2813 (1997). Google Scholar
Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res.41, e1 (2013). Article Google Scholar
Edgar, R. C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nature Methods10, 996–998 (2013). Article Google Scholar
Haas, B. J. et al. Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res.21, 494–504 (2011). Article Google Scholar
Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nature Methods7, 335–336 (2010). Article Google Scholar
Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics26, 2460–2461 (2010). Article Google Scholar
McDonald, D. et al. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J.6, 610–618 (2012). Article Google Scholar
Caporaso, J. G. et al. PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics26, 266–267 (2010). Article Google Scholar
Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol. Biol. Evol.26, 1641–1650 (2009). Article Google Scholar
Chen, Y. et al. Combination of injection volume calibration by creatinine and MS signals’ normalization to overcome urine variability in LC-MS-based metabolomics studies. Anal. Chem.85, 7659–7665 (2013). Article Google Scholar
Want, E. J. et al. Global metabolic profiling procedures for urine using UPLC-MS. Nature Protoc.5, 1005–1018 (2010). Article Google Scholar
Smith, C. A., Want, E. J., O'Maille, G., Abagyan, R. & Siuzdak, G. XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal. Chem.78, 779–787 (2006). Article Google Scholar
Wishart, D. S. et al. HMDB 3.0—The human metabolome database in 2013. Nucleic Acids Res.41, D801–D807 (2013). Article Google Scholar
Kim, S. ppcor: an R package for a fast calculation to semi-partial correlation coefficients. Commun. Stat. Appl. Methods22, 665–674 (2015). Google Scholar
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate—a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B57, 289–300 (1995). Google Scholar
Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics20, 289–290 (2004). Article Google Scholar