Specific roles for DEG/ENaC and TRP channels in touch and thermosensation in C. elegans nociceptors (original) (raw)
Patapoutian, A., Tate, S. & Woolf, C.J. Transient receptor potential channels: targeting pain at the source. Nat. Rev. Drug Discov.8, 55–68 (2009). ArticleCAS Google Scholar
Wemmie, J.A., Price, M.P. & Welsh, M.J. Acid-sensing ion channels: advances, questions and therapeutic opportunities. Trends Neurosci.29, 578–586 (2006). ArticleCAS Google Scholar
Caterina, M.J. et al. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature389, 816–824 (1997). ArticleCAS Google Scholar
Tominaga, M. et al. The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron21, 531–543 (1998). ArticleCAS Google Scholar
McKemy, D.D., Neuhausser, W.M. & Julius, D. Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature416, 52–58 (2002). ArticleCAS Google Scholar
Peier, A.M. et al. A TRP channel that senses cold stimuli and menthol. Cell108, 705–715 (2002). ArticleCAS Google Scholar
Story, G.M. et al. ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell112, 819–829 (2003). ArticleCAS Google Scholar
Bandell, M. et al. Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron41, 849–857 (2004). ArticleCAS Google Scholar
Bautista, D.M. et al. TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell124, 1269–1282 (2006). ArticleCAS Google Scholar
Christensen, A.P. & Corey, D.P. TRP channels in mechanosensation: direct or indirect activation? Nat. Rev. Neurosci.8, 510–521 (2007). ArticleCAS Google Scholar
Kahn-Kirby, A.H. & Bargmann, C.I. TRP channels in C. elegans.Annu. Rev. Physiol.68, 719–736 (2006). ArticleCAS Google Scholar
Kang, K. et al. Analysis of Drosophila TRPA1 reveals an ancient origin for human chemical nociception. Nature464, 597–600 (2010). ArticleCAS Google Scholar
Bounoutas, A. & Chalfie, M. Touch sensitivity in Caenorhabditis elegans.Pflugers Arch.454, 691–702 (2007). ArticleCAS Google Scholar
Garcia-Anoveros, J. & Corey, D.P. The molecules of mechanosensation. Annu. Rev. Neurosci.20, 567–594 (1997). ArticleCAS Google Scholar
Price, M.P. et al. The DRASIC cation channel contributes to the detection of cutaneous touch and acid stimuli in mice. Neuron32, 1071–1083 (2001). ArticleCAS Google Scholar
Driscoll, M. & Chalfie, M. The mec-4 gene is a member of a family of Caenorhabditis elegans genes that can mutate to induce neuronal degeneration. Nature349, 588–593 (1991). ArticleCAS Google Scholar
O'Hagan, R., Chalfie, M. & Goodman, M.B. The MEC-4 DEG/ENaC channel of Caenorhabditis elegans touch receptor neurons transduces mechanical signals. Nat. Neurosci.8, 43–50 (2005). ArticleCAS Google Scholar
Kaplan, J.M. & Horvitz, H.R. A dual mechanosensory and chemosensory neuron in Caenorhabditis elegans.Proc. Natl. Acad. Sci. USA90, 2227–2231 (1993). ArticleCAS Google Scholar
Hilliard, M.A., Bergamasco, C., Arbucci, S., Plasterk, R.H. & Bazzicalupo, P. Worms taste bitter: ASH neurons, QUI-1, GPA-3 and ODR-3 mediate quinine avoidance in Caenorhabditis elegans.EMBO J.23, 1101–1111 (2004). ArticleCAS Google Scholar
Hilliard, M.A. et al. In vivo imaging of C. elegans ASH neurons: cellular response and adaptation to chemical repellents. EMBO J.24, 63–72 (2005). ArticleCAS Google Scholar
Colbert, H.A., Smith, T.L. & Bargmann, C.I. OSM-9, a novel protein with structural similarity to channels, is required for olfaction, mechanosensation, and olfactory adaptation in C. elegans.J. Neurosci.17, 8259–8269 (1997). ArticleCAS Google Scholar
Tobin, D. et al. Combinatorial expression of TRPV channel proteins defines their sensory functions and subcellular localization in C. elegans neurons. Neuron35, 307–318 (2002). ArticleCAS Google Scholar
Kindt, K.S. et al. Caenorhabditis elegans TRPA-1 functions in mechanosensation. Nat. Neurosci.10, 568–577 (2007). ArticleCAS Google Scholar
Yassin, L., Samson, A.O., Halevi, S., Eshel, M. & Treinin, M. Mutations in the extracellular domain and in the membrane-spanning domains interfere with nicotinic acetylcholine receptor maturation. Biochemistry41, 12329–12335 (2002). ArticleCAS Google Scholar
Huang, M. & Chalfie, M. Gene interactions affecting mechanosensory transduction in Caenorhabditis elegans.Nature367, 467–470 (1994). ArticleCAS Google Scholar
Chelur, D.S. et al. The mechanosensory protein MEC-6 is a subunit of the C. elegans touch-cell degenerin channel. Nature420, 669–673 (2002). ArticleCAS Google Scholar
Way, J.C. & Chalfie, M. The mec-3 gene of Caenorhabditis elegans requires its own product for maintained expression and is expressed in three neuronal cell types. Genes Dev.3, 1823–1833 (1989). ArticleCAS Google Scholar
Croll, N.A. Components and patterns in the behaviour of the nematode, Caenorhabditis elegans.J. Zool.176, 159–176 (1975). Article Google Scholar
Gray, J.M., Hill, J.J. & Bargmann, C.I. A circuit for navigation in Caenorhabditis elegans.Proc. Natl. Acad. Sci. USA102, 3184–3191 (2005). ArticleCAS Google Scholar
Srivastava, N., Clark, D.A. & Samuel, A.D. Temporal analysis of stochastic turning behavior of swimming C. elegans.J. Neurophysiol.102, 1172–1179 (2009). Article Google Scholar
Driscoll, M. & Chalfie, M. The mec-4 gene is a member of a family of Caenorhabditis elegans genes that can mutate to induce neuronal degeneration. Nature349, 588–593 (1991). ArticleCAS Google Scholar
Goodman, M.B. et al. MEC-2 regulates C. elegans DEG/ENaC channels needed for mechanosensation. Nature415, 1039–1042 (2002). ArticleCAS Google Scholar
Bianchi, L. et al. The neurotoxic MEC-4(d) DEG/ENaC sodium channel conducts calcium: implications for necrosis initiation. Nat. Neurosci.7, 1337–1344 (2004). ArticleCAS Google Scholar
Goodman, M.B. Mechanosensation. in WormBook (ed. The C. elegans Research Community) doi:10.1895/wormbook.1.62.1 <http://www.wormbook.org/> (2006).
Smith, C.J. et al. Time-lapse imaging and cell-specific expression profiling reveal dynamic branching and molecular determinants of a multi-dendritic nociceptor in C. elegans. Dev. Biol. (in the press).
Esposito, G., Di Schiavi, E., Bergamasco, C. & Bazzicalupo, P. Efficient and cell specific knock-down of gene function in targeted C. elegans neurons. Gene395, 170–176 (2007). ArticleCAS Google Scholar
Tsalik, E.L. et al. LIM homeobox gene-dependent expression of biogenic amine receptors in restricted regions of the C. elegans nervous system. Dev. Biol.263, 81–102 (2003). ArticleCAS Google Scholar
Wu, J., Duggan, A. & Chalfie, M. Inhibition of touch cell fate by egl-44 and egl-46 in C. elegans.Genes Dev.15, 789–802 (2001). ArticleCAS Google Scholar
Zhang, S. et al. MEC-2 is recruited to the putative mechanosensory complex in C. elegans touch receptor neurons through its stomatin-like domain. Curr. Biol.14, 1888–1896 (2004). ArticleCAS Google Scholar
Suzuki, H. et al. In vivo imaging of C. elegans mechanosensory neurons demonstrates a specific role for the MEC-4 channel in the process of gentle touch sensation. Neuron39, 1005–1017 (2003). ArticleCAS Google Scholar
Hall, D. & Altun, Z.F. C. elegans Atlas (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 2008).
Zhong, L., Hwang, R.Y. & Tracey, W.D. Pickpocket is a DEG/ENaC protein required for mechanical nociception in Drosophila larvae. Curr. Biol.20, 429–434 (2010). ArticleCAS Google Scholar
Kamath, R.S., Martinez-Campos, M., Zipperlen, P., Fraser, A.G. & Ahringer, J. Effectiveness of specific RNA-mediated interference through ingested double-stranded RNA in Caenorhabditis elegans. Genome Biol.2, 2 (2001). Google Scholar
Sönnichsen, B. et al. Full-genome RNAi profiling of early embryogenesis in Caenorhabditis elegans.Nature434, 462–469 (2005). Article Google Scholar
Von Stetina, S.E. et al. UNC-4 represses CEH-12/HB9 to specify synaptic inputs to VA motor neurons in C. elegans.Genes Dev.21, 332–346 (2007). ArticleCAS Google Scholar
Von Stetina, S.E. et al. Cell-specific microarray profiling experiments reveal a comprehensive picture of gene expression in the C. elegans nervous system. Genome Biol.8, R135 (2007). Article Google Scholar
Fox, R.M. et al. A gene expression fingerprint of C. elegans embryonic motor neurons. BMC Genomics6, 42 (2005). Article Google Scholar
Watson, J.D. et al. Complementary RNA amplification methods enhance microarray identification of transcripts expressed in the C. elegans nervous system. BMC Genomics9, 84 (2008). Article Google Scholar
Kerr, R. et al. Optical imaging of calcium transients in neurons and pharyngeal muscle of C. elegans.Neuron26, 583–594 (2000). ArticleCAS Google Scholar
Kerr, R.A. Imaging the activity of neurons and muscles. in WormBook (ed. The C. elegans Research Community) doi:10.1895/wormbook.1.113.1 <http://www.wormbook.org/> (2006). Google Scholar