Rac1 is essential in cocaine-induced structural plasticity of nucleus accumbens neurons (original) (raw)
Garey, L.J. et al. Reduced dendritic spine density on cerebral cortical pyramidal neurons in schizophrenia. J. Neurol. Neurosurg. Psychiatry65, 446–453 (1998). ArticleCAS Google Scholar
Russo, S.J. et al. The addicted synapse: mechanisms of synaptic and structural plasticity in nucleus accumbens. Trends Neurosci.33, 267–276 (2010). ArticleCAS Google Scholar
Soetanto, A. et al. Association of anxiety and depression with microtubule-associated protein 2- and synaptopodin-immunolabeled dendrite and spine densities in hippocampal CA3 of older humans. Arch. Gen. Psychiatry67, 448–457 (2010). Article Google Scholar
Hyman, S.E., Malenka, R.C. & Nestler, E.J. Neural mechanisms of addiction: the role of reward-related learning and memory. Annu. Rev. Neurosci.29, 565–598 (2006). ArticleCAS Google Scholar
Robinson, T.E. & Kolb, B. Structural plasticity associated with exposure to drugs of abuse. Neuropharmacology47, 33–46 (2004). ArticleCAS Google Scholar
Kalivas, P.W. The glutamate homeostasis hypothesis of addiction. Nat. Rev. Neurosci.10, 561–572 (2009). ArticleCAS Google Scholar
Nimchinsky, E.A., Sabatini, B.L. & Svoboda, K. Structure and function of dendritic spines. Annu. Rev. Physiol.64, 313–353 (2002). ArticleCAS Google Scholar
Deng, J.V. et al. MeCP2 in the nucleus accumbens contributes to neural and behavioral responses to psychostimulants. Nat. Neurosci.13, 1128–1136 (2010). ArticleCAS Google Scholar
LaPlant, Q. et al. Dnmt3a regulates emotional behavior and spine plasticity in the nucleus accumbens. Nat. Neurosci.13, 1137–1143 (2010). ArticleCAS Google Scholar
Maze, I. et al. Essential role of the histone methyltransferase G9a in cocaine-induced plasticity. Science327, 213–216 (2010). ArticleCAS Google Scholar
Norrholm, S.D. et al. Cocaine-induced proliferation of dendritic spines in nucleus accumbens is dependent on the activity of cyclin-dependent kinase-5. Neuroscience116, 19–22 (2003). ArticleCAS Google Scholar
Pulipparacharuvil, S. et al. Cocaine regulates MEF2 to control synaptic and behavioral plasticity. Neuron59, 621–633 (2008). ArticleCAS Google Scholar
Russo, S.J. et al. Nuclear factor kappa B signaling regulates neuronal morphology and cocaine reward. J. Neurosci.29, 3529–3537 (2009). ArticleCAS Google Scholar
Trachtenberg, J.T. et al. Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature420, 788–794 (2002). ArticleCAS Google Scholar
Holtmaat, A. & Svoboda, K. Experience-dependent structural synaptic plasticity in the mammalian brain. Nat. Rev. Neurosci.10, 647–658 (2009). ArticleCAS Google Scholar
Toda, S., Shen, H.W., Peters, J., Cagle, S. & Kalivas, P.W. Cocaine increases actin cycling: effects in the reinstatement model of drug seeking. J. Neurosci.26, 1579–1587 (2006). ArticleCAS Google Scholar
Shen, H.W. et al. Altered dendritic spine plasticity in cocaine-withdrawn rats. J. Neurosci.29, 2876–2884 (2009). ArticleCAS Google Scholar
Toda, S., Shen, H. & Kalivas, P.W. Inhibition of actin polymerization prevents cocaine-induced changes in spine morphology in the nucleus accumbens. Neurotox. Res.18, 410–415 (2010). ArticleCAS Google Scholar
Halpain, S. Actin and the agile spine: how and why do dendritic spines dance? Trends Neurosci.23, 141–146 (2000). ArticleCAS Google Scholar
Penzes, P. & Jones, K.A. Dendritic spine dynamics—a key role for kalirin-7. Trends Neurosci.31, 419–427 (2008). ArticleCAS Google Scholar
Hayashi-Takagi, A. et al. Disrupted-in-Schizophrenia 1 (DISC1) regulates spines of the glutamate synapse via Rac1. Nat. Neurosci.13, 327–332 (2010). ArticleCAS Google Scholar
Tashiro, A., Minden, A. & Yuste, R. Regulation of dendritic spine morphology by the rho family of small GTPases: antagonistic roles of Rac and Rho. Cereb. Cortex10, 927–938 (2000). ArticleCAS Google Scholar
Tashiro, A. & Yuste, R. Regulation of dendritic spine motility and stability by Rac1 and Rho kinase: evidence for two forms of spine motility. Mol. Cell Neurosci.26, 429–440 (2004). ArticleCAS Google Scholar
Oh, D. et al. Regulation of synaptic Rac1 activity, long-term potentiation maintenance, and learning and memory by BCR and ABR Rac GTPase-activating proteins. J. Neurosci.30, 14134–14144 (2010). ArticleCAS Google Scholar
Luo, L. et al. Differential effects of the Rac GTPase on Purkinje cell axons and dendritic trunks and spines. Nature379, 837–840 (1996). ArticleCAS Google Scholar
Yang, N. et al. Cofilin phosphorylation by LIM-kinase 1 and its role in Rac-mediated actin reorganization. Nature393, 809–812 (1998). ArticleCAS Google Scholar
Edwards, D.C., Sanders, L.C., Bokoch, G.M. & Gill, G.N. Activation of LIM-kinase by Pak1 couples Rac/Cdc42 GTPase signalling to actin cytoskeletal dynamics. Nat. Cell Biol.1, 253–259 (1999). ArticleCAS Google Scholar
Shirazi Fard, S., Kele, J., Vilar, M., Paratcha, G. & Ledda, F. Tiam1 as a signaling mediator of nerve growth factor-dependent neurite outgrowth. PLoS ONE5, e9647 (2010). Article Google Scholar
Miyamoto, Y., Yamauchi, J., Tanoue, A., Wu, C. & Mobley, W.C. TrkB binds and tyrosine-phosphorylates Tiam1, leading to activation of Rac1 and induction of changes in cellular morphology. Proc. Natl. Acad. Sci. USA103, 10444–10449 (2006). ArticleCAS Google Scholar
Nobes, C.D. & Hall, A. Rho GTPases control polarity, protrusion, and adhesion during cell movement. J. Cell Biol.144, 1235–1244 (1999). ArticleCAS Google Scholar
Marinissen, M.J. et al. The small GTP-binding protein RhoA regulates c-Jun by a ROCK-JNK signaling axis. Mol. Cell14, 29–41 (2004). ArticleCAS Google Scholar
Chen, L., Melendez, J., Campbell, K., Kuan, C.Y. & Zheng, Y. Rac1 deficiency in the forebrain results in neural progenitor reduction and microcephaly. Dev. Biol.325, 162–170 (2009). ArticleCAS Google Scholar
Gu, Y. et al. Hematopoietic cell regulation by Rac1 and Rac2 guanosine triphosphatases. Science302, 445–449 (2003). ArticleCAS Google Scholar
Wu, Y.I. et al. A genetically encoded photoactivatable Rac controls the motility of living cells. Nature461, 104–108 (2009). ArticleCAS Google Scholar
Lobo, M.K. et al. Cell type-specific loss of BDNF signaling mimics optogenetic control of cocaine reward. Science330, 385–390 (2010). ArticleCAS Google Scholar
Kim, W.Y., Shin, S.R., Kim, S., Jeon, S. & Kim, J.H. Cocaine regulates ezrin-radixin-moesin proteins and RhoA signaling in the nucleus accumbens. Neuroscience163, 501–505 (2009). ArticleCAS Google Scholar
Hering, H. & Sheng, M. Dendritic spines: structure, dynamics and regulation. Nat. Rev. Neurosci.2, 880–888 (2001). ArticleCAS Google Scholar
Ghosh, M. et al. Cofilin promotes actin polymerization and defines the direction of cell motility. Science304, 743–746 (2004). ArticleCAS Google Scholar
Bosco, E.E., Mulloy, J.C. & Zheng, Y. Rac1 GTPase: a “Rac” of all trades. Cell Mol. Life Sci.66, 370–374 (2009). ArticleCAS Google Scholar
Kalivas, P.W., Volkow, N. & Seamans, J. Unmanageable motivation in addiction: a pathology in prefrontal-accumbens glutamate transmission. Neuron45, 647–650 (2005). ArticleCAS Google Scholar
Schmidt, H.D. & Pierce, R.C. Cocaine-induced neuroadaptations in glutamate transmission: potential therapeutic targets for craving and addiction. Ann. NY Acad. Sci.1187, 35–75 (2010). ArticleCAS Google Scholar
Thomas, M.J., Kalivas, P.W. & Shaham, Y. Neuroplasticity in the mesolimbic dopamine system and cocaine addiction. Br. J. Pharmacol.154, 327–342 (2008). ArticleCAS Google Scholar
Wolf, M.E. The Bermuda Triangle of cocaine-induced neuroadaptations. Trends Neurosci.33, 391–398 (2010). ArticleCAS Google Scholar
Thomas, M.J., Beurrier, C., Bonci, A. & Malenka, R.C. Long-term depression in the nucleus accumbens: a neural correlate of behavioral sensitization to cocaine. Nat. Neurosci.4, 1217–1223 (2001). ArticleCAS Google Scholar
Huang, Y.H. et al. In vivo cocaine experience generates silent synapses. Neuron63, 40–47 (2009). ArticleCAS Google Scholar
Kiraly, D.D. et al. Behavioral and morphological responses to cocaine require Kalirin7. Biol. Psychiatry68, 249–255 (2010). ArticleCAS Google Scholar
Chen, B.T. et al. Cocaine but not natural reward self-administration nor passive cocaine infusion produces persistent LTP in the VTA. Neuron59, 288–297 (2008). ArticleCAS Google Scholar
McCutcheon, J.E., Wang, X., Tseng, K.Y., Wolf, M.E. & Marinelli, M. Calcium-permeable AMPA receptors are present in nucleus accumbens synapses after prolonged withdrawal from cocaine self-administration but not experimenter-administered cocaine. J. Neurosci.31, 5737–5743 (2011). ArticleCAS Google Scholar
McFarland, K., Lapish, C.C. & Kalivas, P.W. Prefrontal glutamate release into the core of the nucleus accumbens mediates cocaine-induced reinstatement of drug-seeking behavior. J. Neurosci.23, 3531–3537 (2003). ArticleCAS Google Scholar
Barrot, M. et al. CREB activity in the nucleus accumbens shell controls gating of behavioral responses to emotional stimuli. Proc. Natl. Acad. Sci. USA99, 11435–11440 (2002). ArticleCAS Google Scholar