The neurotrophin receptor p75NTR: novel functions and implications for diseases of the nervous system (original) (raw)
Bibel, M. & Barde, Y.-A. Neurotrophins: key regulators of cell fate and cell shape in the vertebrate nervous system. Genes Dev.14, 2919–2937 (2000). CASPubMed Google Scholar
Huang, E.J. & Reichardt, L.F. Neurotrophins: roles in neuronal development and function. Annu. Rev. Neurosci.24, 677–736 (2001). CASPubMedPubMed Central Google Scholar
Thoenen, H. Neurotrophins and activity-dependent plasticity. Prog. Brain Res.128, 183–191 (2000). CASPubMed Google Scholar
Poo, M.M. Neurotrophins as synaptic modulators. Nat. Rev. Neurosci.2, 24–32 (2001). CASPubMed Google Scholar
Kafitz, K.W., Rose, C.R., Thoenen, H. & Konnerth, A. Neurotrophin-evoked rapid excitation through TrkB receptors. Nature401, 918–921 (1999). CASPubMed Google Scholar
Kaplan, D.R. & Miller, F.D. Signal transduction by the neurotrophin receptors. Curr. Opin. Cell Biol.9, 213–221 (1997). CASPubMed Google Scholar
Friedman, W.J. & Greene, L.A. Neurotrophin signaling via Trks and p75. Exp. Cell Res.253, 131–142 (1999). CASPubMed Google Scholar
Patapoutian, A. & Reichardt, L.F. Trk receptors: mediators of neurotrophin action. Curr. Opin. Neurobiol.11, 272–280 (2001). CASPubMed Google Scholar
Locksley, R.M., Killeen, N. & Lenardo, M.J. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell104, 487–501 (2001). CASPubMed Google Scholar
Bothwell, M. Functional interactions of neurotrophins and neurotrophin receptors. Annu. Rev. Neurosci.18, 223–253 (1995). CASPubMed Google Scholar
Lee, R., Kermani, P., Teng, K.K. & Hempstead, B.L. Regulation of cell survival by secreted proneurotrophins. Science294, 1945–1948 (2001). CASPubMed Google Scholar
Hempstead, B.L. The many faces of p75NTR. Curr. Opin. Neurobiol.12, 260–267 (2002). CASPubMed Google Scholar
Fahnestock, M., Michalski, B., Xu, B. & Coughlin, M.D. The precursor pro-nerve growth factor is the predominant form of nerve growth factor in brain and is increased in Alzheimer's disease. Mol. Cell. Neurosci.18, 210–220 (2001). CASPubMed Google Scholar
Della-Bianca, V. et al. Neurotrophin p75 receptor is involved in neuronal damage by prion peptide-(106–126). J. Biol. Chem.276, 38929–38933 (2001). CASPubMed Google Scholar
Yaar, M. et al. Binding of beta-amyloid to the p75 neurotrophin receptor induces apoptosis. A possible mechanism for Alzheimer's disease. J. Clin. Invest.100, 2333–2340 (1997). CASPubMedPubMed Central Google Scholar
Kuner, P., Schubenel, R. & Hertel, C. Beta-amyloid binds to p57NTR and activates NFκB in human neuroblastoma cells. J. Neurosci. Res.54, 798–804 (1998). CASPubMed Google Scholar
Perini, G. et al. Role of p75 neurotrophin receptor in the neurotoxicity by beta-amyloid peptides and synergistic effect of inflammatory cytokines. J. Exp. Med.195, 907–918 (2002). CASPubMedPubMed Central Google Scholar
Tuffereau, C., Bénéjean, J., Blondel, D., Kieffer, B. & Flamand, A. Low-affinity nerve-growth factor receptor (P75NTR) can serve as a receptor for rabies virus. EMBO J.17, 7250–7259 (1998). CASPubMedPubMed Central Google Scholar
Von Schack, D. et al. Complete ablation of the neurotrophin receptor p75NTR causes defects both in the nervous and the vascular system. Nat. Neurosci.4, 977–978 (2001). CASPubMed Google Scholar
Langevin, C., Jaaro, H., Bressanelli, S., Fainzilber, M. & Tuffereau, C. Rabies virus glycoprotein (RVG) is a trimeric ligand for the N-terminal cysteine-rich domain of the mammalian p75 neurotrophin receptor. J. Biol. Chem. [e-pub] (2002).
Lee, K.-F. et al. Targeted mutation of the gene encoding the low affinity NGF receptor p75 leads to deficits in the peripheral sensory nervous system. Cell69, 737–749 (1992). CASPubMed Google Scholar
Casaccia-Bonnefil, P., Kong, H. & Chao, M.V. Neurotrophins: the biological paradox of survival factors eliciting apoptosis. Cell Death Differ.5, 357–364 (1998). CASPubMed Google Scholar
Frade, J.M. & Barde, Y.A. Nerve growth factor: two receptors, multiple functions. BioEssays20, 137–145 (1998). CASPubMed Google Scholar
Barker, P.A. p75NTR: a study in contrasts. Cell Death Differ.5, 346–356 (1998). CASPubMed Google Scholar
Bamji, S.X. et al. The p75 neurotrophin receptor mediates neuronal apoptosis and is essential for naturally occurring sympathetic neuron death. J. Cell Biol.140, 911–923 (1998). CASPubMedPubMed Central Google Scholar
Rabizadeh, S. et al. Induction of apoptosis by the low-affinity NGF receptor. Science261, 345–348 (1993). CASPubMed Google Scholar
Majdan, M. et al. Transgenic mice expressing the intracellular domain of the p75 neurotrophin receptor undergo neuronal apoptosis. J. Neurosci.17, 6988–6998 (1997). CASPubMedPubMed Central Google Scholar
Naumann, T. et al. Complete deletion of the neurotrophin receptor p75NTR leads to long-lasting increases in the number of basal forebrain cholinergic neurons. J. Neurosci.22, 2409–2418 (2002). CASPubMedPubMed Central Google Scholar
Greferath, U. et al. Enlarged cholinergic forebrain neurons and improved spatial learning in p75 knockout mice. Eur. J. Neurosci.12, 885–893 (2000). CASPubMed Google Scholar
Frade, J.M. NRAGE and the cycling side of the neurotrophin receptor p75. Trends Neurosci.23, 591–592 (2000). CASPubMed Google Scholar
Dobrowsky, R.T. & Carter, B.D. p75 neurotrophin receptor signaling: mechanisms for neurotrophic modulation of cell stress? J. Neurosci. Res.61, 237–243 (2000). CASPubMed Google Scholar
Barker, P.A. & Salehi, A. The MAGE proteins: emerging roles in cell cycle progression, apoptosis and neurogenetic disease. J. Neurosci. Res.67, 705–712 (2002). CASPubMed Google Scholar
Agerman, K., Baudet, C., Fundin, B., Willson, C. & Ernfors, P. Attenuation of a caspase-3 dependent cell death in NT4- and p75-deficient embryonic sensory neurons. Mol. Cell. Neurosci.16, 258–268 (2000). CASPubMed Google Scholar
Troy, C.M., Friedman, J.E. & Friedman, W.J. Mechanisms of p75-mediated death of hippocampal neurons: role of caspases. J. Biol. Chem. [e-pub] (2002).
Yoon, S.O., Casaccia-Bonnefil, P., Carter, B. & Chao, M.V. Competitive signaling between TrkA and p75 nerve growth factor receptors determines cell survival. J. Neurosci.18, 3273–3281 (1998). CASPubMedPubMed Central Google Scholar
Aloyz, R.S. et al. p53 is essential for developmental neuron death as regulated by the TrkA and p75 neurotrophin receptors. J. Cell Biol.143, 1691–1703 (1998). CASPubMedPubMed Central Google Scholar
Ye, X. et al. TRAF family proteins interact with the common neurotrophin receptor and modulate apoptosis induction. J. Biol. Chem.274, 30202–30208 (1999). CASPubMed Google Scholar
Khursigara, G., Orlinick, J.R. & Chao, M.V. Association of the p75 neurotrophin receptor with TRAF6. J. Biol. Chem.274, 2597–2600 (1999). CASPubMed Google Scholar
Chung, J.Y., Park, Y.C., Ye, H. & Wu, H. All TRAFs are not equal: common and distinct molecular mechanisms of TRAF-mediated signal transduction. J. Cell Sci.115, 679–688 (2002). CASPubMed Google Scholar
Lee, K.-F., Davies, A.M. & Jaenisch, R. p75-deficient embryonic dorsal root sensory and neonatal sympathetic neurons display a decreased sensitivity to NGF. Development120, 1027–1033 (1994). CASPubMed Google Scholar
Bibel, M., Hoppe, E. & Barde, Y.A. Biochemical and functional interactions between the neurotrophin receptors trk and p75NTR. EMBO J.18, 616–622 (1999). CASPubMedPubMed Central Google Scholar
Hempstead, B.L., Martin-Zanca, D., Kaplan, D.R., Parada, L.F. & Chao, M.V. High-affinity NGF binding requires coexpression of the trk proto-oncogene and the low-affinity NGF receptor. Nature350, 678–683 (1991). CASPubMed Google Scholar
Woldeyesus, M.T. et al. Peripheral nervous system defects in erbB2 mutants following genetic rescue of heart development. Genes Dev.13, 2538–2548 (1999). CASPubMedPubMed Central Google Scholar
Johnson, E.M. Jr., Taniuchi, M. & Distefano, P.S. Expression and possible function of nerve growth factor receptors on Schwann cells. Trends Neurosci.11, 299–304 (1988). CASPubMed Google Scholar
Anton, E.S., Weskamp, G., Reichardt, L.F. & Matthew, W.D. Nerve growth factor and its low-affinity receptor promote Schwann cell migration. Proc. Natl. Acad. Sci. USA91, 2795–2799 (1994). CASPubMedPubMed Central Google Scholar
Bentley, C.A. & Lee, K.F. p75 is important for axon growth and Schwann cell migration during development. J. Neurosci.20, 7706–7715 (2000). CASPubMedPubMed Central Google Scholar
Carter, B.D. et al. Selective activation of NF-κB by nerve growth factor through the neurotrophin receptor p75. Science272, 542–545 (1996). CASPubMed Google Scholar
Descamps, S. et al. Nerve growth factor stimulates proliferation and survival of human breast cancer cells through two distinct signaling pathways. J. Biol. Chem.276, 17864–17870 (2001). CASPubMed Google Scholar
Cosgaya, J.M. & Shooter, E.M. Binding of nerve growth factor to its p75 receptor in stressed cells induces selective IκB-beta degradation and NF-κB nuclear translocation. J. Neurochem.79, 391–399 (2001). CASPubMed Google Scholar
Wooten, M.W. et al. The atypical protein kinase C-interacting protein p62 is a scaffold for NF-κB activation by nerve growth factor. J. Biol. Chem.276, 7709–7712 (2001). CASPubMed Google Scholar
Hamanoue, M. et al. p75-mediated NF-κB activation enhances the survival response of developing sensory neurons to nerve growth factor. Mol. Cell. Neurosci.14, 28–40 (1999). CASPubMed Google Scholar
DeFreitas, M.F., McQuillen, P.S. & Shatz, C.J. A novel p75NTR signaling pathway promotes survival, not death, of immunopurified neocortical subplate neurons. J. Neurosci.21, 5121–5129 (2001). CASPubMedPubMed Central Google Scholar
Roux, P.P., Bhakar, A.L., Kennedy, T.E. & Barker, P.A. The p75 neurotrophin receptor activates Akt (protein kinase B) through a phosphatidylinositol 3-kinase-dependent pathway. J. Biol. Chem.276, 23097–23104 (2001). CASPubMed Google Scholar
Chen, G. & Goeddel, D.V. TNF-R1 signaling: a beautiful pathway. Science296, 1634–1635 (2002). CASPubMed Google Scholar
Taglialatela, G., Robinson, R. & Perez-Polo, J.R. Inhibition of nuclear factor κB (NF κB) activity induces nerve growth factor-resistant apoptosis in PC12 cells. J. Neurosci. Res.94, 155–162 (1997). Google Scholar
Gentry, J.J., Casaccia-Bonnefil, P. & Carter, B.D. Nerve growth factor activation of nuclear factor κB through its p75 receptor is an anti-apoptotic signal in RN22 schwannoma cells. J. Biol. Chem.275, 7558–7565 (2000). CASPubMed Google Scholar
Brann, A.B. et al. Ceramide signaling downstream of the p75 neurotrophin receptor mediates the effects of nerve growth factor on outgrowth of cultured hippocampal neurons. J. Neurosci.19, 8199–8206 (1999). CASPubMedPubMed Central Google Scholar
Yamashita, T., Tucker, K.L. & Barde, Y.A. Neurotrophin binding to the p75 receptor modulates Rho activity and axonal outgrowth. Neuron24, 585–593 (1999). CASPubMed Google Scholar
Collins, F. & Dawson, A. An effect of nerve growth factor on the parasympathetic ciliary ganglion. J. Neurosci.4, 1281–1288 (1984). CASPubMedPubMed Central Google Scholar
Schmidt, A. & Hall, A. Guanine nucleotide exchange factors for Rho GTPases: turning on the switch. Genes Dev.16, 1587–1609 (2002). CASPubMed Google Scholar
Walsh, G.S., Krol, K.M., Crutcher, K.A. & Kawaja, M.D. Enhanced neurotrophin-induced axon growth in myelinated portions of the CNS in mice lacking the p75 neurotrophin receptor. J. Neurosci.19, 4155–4168 (1999). CASPubMedPubMed Central Google Scholar
Yamashita, T., Higuchi, H. & Tohyama, M. The p75 receptor transduces the signal from myelin-associated glycoprotein to Rho. J. Cell Biol.157, 565–570 (2002). CASPubMedPubMed Central Google Scholar
Yang, L.J. et al. Gangliosides are neuronal ligands for myelin-associated glycoprotein. Proc. Natl. Acad. Sci. USA93, 814–818 (1996). CASPubMedPubMed Central Google Scholar
Wang, K.C., Kim, J.A., Sivasankaran, R., Segal, R. & He, Z p75 interacts with the Nogo receptor as a co-receptor for Nogo, MAG and OMgp. Nature advance online publication (doi:10.1038/nature01176).
Fournier, A.E., GrandPre, T. & Strittmatter, S.M. Identification of a receptor mediating Nogo-66 inhibition of axonal regeneration. Nature409, 341–346 (2001). CASPubMed Google Scholar
Wang, K.C. et al. Oligodendrocyte-myelin glycoprotein is a Nogo receptor ligand that inhibits neurite outgrowth. Nature417, 941–944 (2002). CASPubMed Google Scholar
McQuillen, P.S., DeFreitas, M.F., Zada, G. & Shatz, C.J. A novel role for p75NTR in subplate growth cone complexity and visual thalamocortical innervation. J. Neurosci.22, 3580–3593 (2002). CASPubMedPubMed Central Google Scholar
Yang, B., Slonimsky, J.D. & Birren, S.J. A rapid switch in sympathetic neurotransmitter release properties mediated by the p75 receptor. Nat. Neurosci.5, 539–545 (2002). CASPubMed Google Scholar
Furshpan, E.J., MacLeish, P.R., O'Lague, P.H. & Potter, D.D. Chemical transmission between rat sympathetic neurons and cardiac myocytes developing in microcultures: evidence for cholinergic, adrenergic and dual-function neurons. Proc. Natl. Acad. Sci. USA73, 4225–4229 (1976). CASPubMedPubMed Central Google Scholar
Lockhart, S.T., Turrigiano, G.G. & Birren, S.J. Nerve growth factor modulates synaptic transmission between sympathetic neurons and cardiac myocytes. J. Neurosci.17, 9573–9582 (1997). CASPubMedPubMed Central Google Scholar
Dobrowsky, R.T. & Carter, B.D. Coupling of the p75 neurotrophin receptor to sphingolipid signaling. Ann. NY Acad. Sci.845, 32–45 (1998). CASPubMed Google Scholar
Numakawa, T., Takei, N., Yamagishi, S., Sakai, N. & Hatanaka, H. Neurotrophin-elicited short-term glutamate release from cultured cerebellar granule neurons. Brain Res.842, 431–438 (1999). CASPubMed Google Scholar
Sudhof, T.C. α-Latrotoxin and its receptors: neurexins and CIRL/latrophilins. Annu. Rev. Neurosci.24, 933–962 (2001). CASPubMed Google Scholar
Gage, F.H. et al. NGF receptor reexpression and NGF-mediated cholinergic neuronal hypertrophy in the damaged adult neostriatum. Neuron2, 1177–1184 (1989). CASPubMed Google Scholar
Rende, M., Provenzano, C. & Tonali, P. Modulation of low-affinity nerve growth factor receptor in injured adult rat spinal cord motoneurons. J. Comp. Neurol.338, 560–574 (1993). CASPubMed Google Scholar
Kokaia, Z., Andsberg, G., Martinez-Serrano, A. & Lindvall, O. Focal cerebral ischemia in rats induces expression of P75 neurotrophin receptor in resistant striatal cholinergic neurons. Neuroscience84, 1113–1125 (1998). CASPubMed Google Scholar
Roux, P.P., Colicos, M.A., Barker, P.A. & Kennedy, T.E. p75 neurotrophin receptor expression is induced in apoptotic neurons after seizure. J. Neurosci.19, 6887–6896 (1999). CASPubMedPubMed Central Google Scholar
Mufson, E.J. & Kordower, J.H. Cortical neurons express nerve growth factor receptors in advanced age and Alzheimer disease. Proc. Natl. Acad. Sci. USA89, 569–573 (1992). CASPubMedPubMed Central Google Scholar
Lowry, K.S. et al. A potential role for the p75 low-affinity neurotrophin receptor in spinal motor neuron degeneration in murine and human amyotrophic lateral sclerosis. Amyotroph. Lateral. Scler. Other Motor Neuron Disord.2, 127–134 (2001). CASPubMed Google Scholar
Giehl, K.M. et al. Endogenous brain-derived neurotrophic factor and neurotrophin-3 antagonistically regulate survival of axotomized corticospinal neurons in vivo. J. Neurosci.21, 3492–3502 (2001). CASPubMedPubMed Central Google Scholar
Oh, J.D., Chartisathian, K., Chase, T.N. & Butcher, L.L. Overexpression of neurotrophin receptor p75 contributes to the excitotoxin-induced cholinergic neuronal death in rat basal forebrain. Brain Res.853, 174–185 (2000). CASPubMed Google Scholar
Barker, V., Middleton, G., Davey, F. & Davies, A.M. TNFα contributes to the death of NGF-dependent neurons during development. Nat. Neurosci.4, 1194–1198 (2001). CASPubMed Google Scholar
Raoul, C., Henderson, C.E. & Pettmann, B. Programmed cell death of embryonic motoneurons triggered through the Fas death receptor. J. Cell Biol.147, 1049–1062 (1999). CASPubMedPubMed Central Google Scholar
Neumann, H. et al. Tumor necrosis factor inhibits neurite outgrowth and branching of hippocampal neurons by a rho-dependent mechanism. J. Neurosci.22, 854–862 (2002). CASPubMedPubMed Central Google Scholar
Beattie, E.C. et al. Control of synaptic strength by glial TNFα. Science295, 2282–2285 (2002). CASPubMed Google Scholar
Liepinsh, E., Ilag, L.L., Otting, G. & Ibáñez, C.F. NMR structure of the death domain of the p75 neurotrophin receptor. EMBO J.16, 4999–5005 (1997). CASPubMedPubMed Central Google Scholar
Coulson, E.J. et al. Chopper, a new death domain of the p75 neurotrophin receptor that mediates rapid neuronal cell death. J. Biol. Chem.275, 30537–30545 (2000). CASPubMed Google Scholar
Fainzilber, M. et al. CRNF, a molluscan neurotrophic factor that interacts with the p75 neurotrophin receptor. Science274, 1540–1543 (1996). CASPubMed Google Scholar
Kong, H., Boulter, J., Weber, J.L., Lai, C. & Chao, M.V. An evolutionarily conserved transmembrane protein that is a novel downstream target of neurotrophin and ephrin receptors. J. Neurosci.21, 176–185 (2001). CASPubMedPubMed Central Google Scholar
Chittka, A. & Chao, M.V. Identification of a zinc finger protein whose subcellular distribution is regulated by serum and nerve growth factor. Proc. Natl. Acad. Sci. USA96, 10705–10710 (1999). CASPubMedPubMed Central Google Scholar
Casademunt, E. et al. The zinc finger protein NRIF interacts with the neurotrophin receptor p75NTR and participates in programmed cell death. EMBO J.18, (1999).
Benzel, I., Barde, Y.A. & Casademunt, E. Strain-specific complementation between NRIF1 and NRIF2, two zinc finger proteins sharing structural and biochemical properties. Gene281, 19–30 (2001). CASPubMed Google Scholar
Salehi, A.H. et al. NRAGE, a novel MAGE protein, interacts with the p75 neurotrophin receptor and facilitates nerve growth factor-dependent apoptosis. Neuron27, 279–288 (2000). CASPubMed Google Scholar
Jordan, B.W. et al. Neurotrophin receptor-interacting mage homologue is an inducible inhibitor of apoptosis protein-interacting protein that augments cell death. J. Biol. Chem.276, 39985–39989 (2001). CASPubMed Google Scholar
Mukai, J. et al. NADE, a p75NTR-associated cell death executor, is involved in signal transduction mediated by the common neurotrophin receptor p75NTR. J. Biol. Chem.275, 17566–17570 (2000). CASPubMed Google Scholar
Irie, S. et al. Functional interaction of Fas-associated phosphatase-1 (FAP-1) with p75(NTR) and their effect on NF-κB activation. FEBS Lett.460, 191–198 (1999). CASPubMed Google Scholar
Khursigara, G. et al. A prosurvival function for the p75 receptor death domain mediated via the caspase recruitment domain receptor-interacting protein 2. J. Neurosci.21, 5854–5863 (2001). CASPubMedPubMed Central Google Scholar
Bilderback, T.R., Grigsby, R.J. & Dobrowsky, R.T. Association of p75_NTR_ with caveolin and localization of neurotrophin-induced sphingomyelin hydrolysis to caveolae. J. Biol. Chem.272, 10922–10927 (1997) CASPubMed Google Scholar
Mamidipudi, V., Li, X. & Wooten, M.W. Identification of IRAK as a conserved component in the p75-neurotrophin receptor activation of NF-κ B. J. Biol. Chem.277, 28010–28018 (2002). CASPubMed Google Scholar
Volonte, C., Angelastro, J.M. & Greene, L.A. Association of protein kinases ERK1 and ERK2 with p75 nerve growth factor receptors. J. Biol. Chem.268, 21410–21415 (1993). CASPubMed Google Scholar
Susen, K., Heumann, R. & Blochl, A. Nerve growth factor stimulates MAPK via the low affinity receptor p75(LNTR). FEBS Lett.463, 231–234 (1999). CASPubMed Google Scholar
Wang, J.J., Tasinato, A., Ethell, D.W., Testa, M.P. & Bredesen, D.E. Phosphorylation of the common neurotrophin receptor p75 by p38beta2 kinase affects NF-κB and AP-1 activities. J. Mol. Neurosci.15, 19–29 (2000). CASPubMed Google Scholar