Dopamine neurons encode the better option in rats deciding between differently delayed or sized rewards (original) (raw)
References
Wise, R.A. Dopamine, learning and motivation. Nat. Rev. Neurosci.5, 483–494 (2004). ArticleCAS Google Scholar
Schultz, W. Getting formal with dopamine and reward. Neuron36, 241–263 (2002). ArticleCAS Google Scholar
Dayan, P. & Balleine, B.W. Reward, motivation and reinforcement learning. Neuron36, 285–298 (2002). ArticleCAS Google Scholar
Day, J.J., Roitman, M.F., Wightman, R.M. & Carelli, R.M. Associative learning mediates dynamic shifts in dopamine signaling in the nucleus accumbens. Nat. Neurosci.10, 1020–1028 (2007). ArticleCAS Google Scholar
Mirenowicz, J. & Schultz, W. Importance of unpredictability for reward responses in primate dopamine neurons. J. Neurophysiol.72, 1024–1027 (1994). ArticleCAS Google Scholar
Fiorillo, C.D., Tobler, P.N. & Schultz, W. Discrete coding of reward probability and uncertainty by dopamine neurons. Science299, 1898–1902 (2003). ArticleCAS Google Scholar
Tobler, P.N., Dickinson, A. & Schultz, W. Coding of predicted reward omission by dopamine neurons in a conditioned inhibition paradigm. J. Neurosci.23, 10402–10410 (2003). ArticleCAS Google Scholar
Hollerman, J.R. & Schultz, W. Dopamine neurons report an error in the temporal prediction of reward during learning. Nat. Neurosci.1, 304–309 (1998). ArticleCAS Google Scholar
Waelti, P., Dickinson, A. & Schultz, W. Dopamine responses comply with basic assumptions of formal learning theory. Nature412, 43–48 (2001). ArticleCAS Google Scholar
Montague, P.R., Dayan, P. & Sejnowski, T.J. A framework for mesencephalic dopamine systems based on predictive hebbian learning. J. Neurosci.16, 1936–1947 (1996). ArticleCAS Google Scholar
Nakahara, H., Itoh, H., Kawagoe, R., Takikawa, Y. & Hikosaka, O. Dopamine neurons can represent context-dependent prediction error. Neuron41, 269–280 (2004). ArticleCAS Google Scholar
Pan, W.X., Schmidt, R., Wickens, J.R. & Hyland, B.I. Dopamine cells respond to predicted events during classical conditioning: evidence for eligibility traces in the reward-learning network. J. Neurosci.25, 6235–6242 (2005). ArticleCAS Google Scholar
Morris, G., Nevet, A., Arkadir, D., Vaadia, E. & Bergman, H. Midbrain dopamine neurons encode decisions for future action. Nat. Neurosci.9, 1057–1063 (2006). ArticleCAS Google Scholar
Kawagoe, R., Takikawa, Y. & Hikosaka, O. Reward-predicting activity of dopamine and caudate neurons—a possible mechanism of motivational control of saccadic eye movement. J. Neurophysiol.91, 1013–1024 (2004). Article Google Scholar
Cardinal, R.N., Pennicott, D.R., Sugathapala, C.L., Robbins, T.W. & Everitt, B.J. Impulsive choice induced in rats by lesions of the nucleus accumbens core. Science292, 2499–2501 (2001). ArticleCAS Google Scholar
Evenden, J.L. & Ryan, C.N. The pharmacology of impulsive behaviour in rats: the effects of drugs on response choice with varying delays of reinforcement. Psychopharmacology (Berl.)128, 161–170 (1996). ArticleCAS Google Scholar
Herrnstein, R.J. Relative and absolute strength of response as a function of frequency of reinforcement. J. Exp. Anal. Behav.4, 267–272 (1961). ArticleCAS Google Scholar
Ho, M.Y., Mobini, S., Chiang, T.J., Bradshaw, C.M. & Szabadi, E. Theory and method in the quantitative analysis of “impulsive choice” behaviour: implications for psychopharmacology. Psychopharmacology (Berl.)146, 362–372 (1999). ArticleCAS Google Scholar
Mobini, S. et al. Effects of lesions of the orbitofrontal cortex on sensitivity to delayed and probabilistic reinforcement. Psychopharmacology (Berl.)160, 290–298 (2002). ArticleCAS Google Scholar
Kahneman, D. & Tverskey, A. Choices, values and frames. Am. Psychol.39, 341–350 (1984). Article Google Scholar
Kalenscher, T. et al. Single units in the pigeon brain integrate reward amount and time-to-reward in an impulsive choice task. Curr. Biol.15, 594–602 (2005). ArticleCAS Google Scholar
Lowenstein, G.E.J. Choice Over Time (Russel Sage Foundation, New York, 1992).
Thaler, R. Some empirical evidence on dynamic inconsistency. Econ. Lett.8, 201–207 (1981). Article Google Scholar
Winstanley, C.A., Theobald, D.E., Cardinal, R.N. & Robbins, T.W. Contrasting roles of basolateral amygdala and orbitofrontal cortex in impulsive choice. J. Neurosci.24, 4718–4722 (2004). ArticleCAS Google Scholar
Cardinal, R.N., Winstanley, C.A., Robbins, T.W. & Everitt, B.J. Limbic corticostriatal systems and delayed reinforcement. Ann. NY Acad. Sci.1021, 33–50 (2004). Article Google Scholar
Kheramin, S. et al. Effects of orbital prefrontal cortex dopamine depletion on intertemporal choice: a quantitative analysis. Psychopharmacology (Berl.)175, 206–214 (2004). ArticleCAS Google Scholar
Wade, T.R., de Wit, H. & Richards, J.B. Effects of dopaminergic drugs on delayed reward as a measure of impulsive behavior in rats. Psychopharmacology (Berl.)150, 90–101 (2000). ArticleCAS Google Scholar
Cardinal, R.N., Robbins, T.W. & Everitt, B.J. The effects of d-amphetamine, chlordiazepoxide, alpha-flupenthixol and behavioural manipulations on choice of signalled and unsignalled delayed reinforcement in rats. Psychopharmacology (Berl.)152, 362–375 (2000). ArticleCAS Google Scholar
Roesch, M.R., Takahashi, Y., Gugsa, N., Bissonette, G.B. & Schoenbaum, G. Previous cocaine exposure makes rats hypersensitive to both delay and reward magnitude. J. Neurosci.27, 245–250 (2007). ArticleCAS Google Scholar
Roesch, M.R., Taylor, A.R. & Schoenbaum, G. Encoding of time-discounted rewards in orbitofrontal cortex is independent of value representation. Neuron51, 509–520 (2006). ArticleCAS Google Scholar
Tobler, P.N., Fiorillo, C.D. & Schultz, W. Adaptive coding of reward value by dopamine neurons. Science307, 1642–1645 (2005). ArticleCAS Google Scholar
Kiyatkin, E.A. & Rebec, G.V. Heterogeneity of ventral tegmental area neurons: single-unit recording and iontophoresis in awake, unrestrained rats. Neuroscience85, 1285–1309 (1998). ArticleCAS Google Scholar
Bunney, B.S., Aghajanian, G.K. & Roth, R.H. Comparison of effects of L-dopa, amphetamine and apomorphine on firing rate of rat dopaminergic neurones. Nat. New Biol.245, 123–125 (1973). ArticleCAS Google Scholar
Skirboll, L.R., Grace, A.A. & Bunney, B.S. Dopamine auto- and postsynaptic receptors: electrophysiological evidence for differential sensitivity to dopamine agonists. Science206, 80–82 (1979). ArticleCAS Google Scholar
Niv, Y., Daw, N.D. & Dayan, P. Choice values. Nat. Neurosci.9, 987–988 (2006). ArticleCAS Google Scholar
Haber, S.N., Fudge, J.L. & McFarland, N.R. Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. J. Neurosci.20, 2369–2382 (2000). ArticleCAS Google Scholar
Joel, D. & Weiner, I. The connections of the dopaminergic system with the striatum in rats and primates: an analysis with respect to the functional and compartmental organization of the striatum. Neuroscience96, 451–474 (2000). ArticleCAS Google Scholar
Yin, H.H., Knowlton, B.J. & Balleine, B.W. Lesions of dorsolateral striatum preserve outcome expectancy, but disrupt habit formation in instrumental learning. Eur. J. Neurosci.19, 181–189 (2004). Article Google Scholar
O'Doherty, J. et al. Dissociable roles of ventral and dorsal striatum in instrumental conditioning. Science304, 452–454 (2004). ArticleCAS Google Scholar
Knowlton, B.J., Mangels, J.A. & Squire, L. A neostriatal habit learning system in humans. Science273, 1399–1402 (1996). ArticleCAS Google Scholar
Hatfield, T., Han, J.S., Conley, M., Gallagher, M. & Holland, P. Neurotoxic lesions of basolateral, but not central, amygdala interfere with Pavlovian second-order conditioning and reinforcer devaluation effects. J. Neurosci.16, 5256–5265 (1996). ArticleCAS Google Scholar
Gallagher, M., McMahan, R.W. & Schoenbaum, G. Orbitofrontal cortex and representation of incentive value in associative learning. J. Neurosci.19, 6610–6614 (1999). ArticleCAS Google Scholar
Baxter, M.G., Parker, A., Lindner, C.C.C., Izquierdo, A.D. & Murray, E.A. Control of response selection by reinforcer value requires interaction of amygdala and orbitofrontal cortex. J. Neurosci.20, 4311–4319 (2000). ArticleCAS Google Scholar
Gottfried, J.A., O'Doherty, J. & Dolan, R.J. Encoding predictive reward value in human amygdala and orbitofrontal cortex. Science301, 1104–1107 (2003). ArticleCAS Google Scholar
Lu, L. et al. Central amygdala ERK signaling pathway is critical to incubation of cocaine craving. Nat. Neurosci.8, 212–219 (2005). ArticleCAS Google Scholar