Proposal for an all-spin logic device with built-in memory (original) (raw)
Wolf, S. A. et al. Spintronics: a spin-based electronics vision for the future. Science294, 1488–1495 (2001). ArticleCAS Google Scholar
Nikonov, D. E., Bourianoff, G. I. & Gargini, P. A., Power dissipation in spintronic devices out of thermodynamic equilibrium. J. Super. Novel Magn.19, 497–513 (2006). ArticleCAS Google Scholar
Xu, P. et al. An all-metallic logic gate based on current-driven domain wall motion. Nature Nanotech.3, 97–100, (2008). ArticleCAS Google Scholar
Dery, H., Dalal, P., Cywinski, L. & Sham, L. J. Spin-based logic in semiconductors for reconfigurable large-scale circuits. Nature447, 573–576 (2007). ArticleCAS Google Scholar
Ney, A., Pampuch, C., Koch, R. & Ploog, K. H. Programmable computing with a single magnetoresistive element. Nature425, 485–487 (2003). ArticleCAS Google Scholar
Brataas, A., Bauer, G. E. W. & Kelly, P. J. Non-collinear magnetoelectronics. Phys. Rep.427, 157–255 (2006). ArticleCAS Google Scholar
Leem, L. & Harris, J. S. Magnetic coupled spin-torque devices and magnetic ring oscillator. Proc. IEDM doi: 10.1109/IEDM.2008.4796640 (2008).
Khitun, A. et al. Spin wave logic circuit on silicon platform. Fifth International Conference on Information Technology: New Generations 1107–1110 (2008).
Waser, R. (ed.) Nanoelectronics and Information Technology Ch. III (Wiley-VCH, 2003). Google Scholar
Nikonov, D. E., Bourianoff, G. I. & Gargini, P. A. Simulation of highly idealized, atomic scale magnetic quantum cellular automata logic circuits. J. Nano. Opt. Dev.3, 3–11 (2008). Google Scholar
Johnson, M. & Silsbee, R. H. Interfacial charge–spin coupling: injection and detection of spin magnetization in metals. Phys. Rev. Lett.55, 1790–1793 (1985). ArticleCAS Google Scholar
Jedeema, F. J., Filip, A. T. & Van Wees, B. J. Electrical spin injection and accumulation at room temperature in an all metal mesoscopic spin valve. Nature410, 345–348 (2001). Article Google Scholar
Cowburn, R. P. & Welland, M. E. Room temperature magnetic quantum cellular automata. Science287, 1466–1468 (2000). ArticleCAS Google Scholar
Imre, A. et al. Majority logic gate for magnetic quantum-dot cellular automata. Science311, 205–208 (2006). ArticleCAS Google Scholar
Carlton, D. B., Emley, N. C., Tuchfeld, E. & Bokor, J. Simulation of nanomagnet-based logic architecture. Nano Lett.8, 4173–4178 (2008). ArticleCAS Google Scholar
Allwood, D. A. et al. Magnetic domain-wall logic. Science309, 1688–1692 (2002). Article Google Scholar
Salahuddin, S . & Datta, S. Interacting systems for self correcting low power switching. Appl. Phys. Lett.90, 093503 (2007). Article Google Scholar
Behin-Aein, B., Salahuddin, S. & Datta, S. Switching energy of ferromagnetic logic bits. IEEE Trans. Nanotech.8, 505–514 (2009). Article Google Scholar
Slonczewski, J. C. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater.159, L1–L7 (1996). ArticleCAS Google Scholar
Berger, L. Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B54, 9353–9358 (1996). ArticleCAS Google Scholar
Tsoi, M. et al. Excitation of a magnetic multilayer by an electric current. Phys. Rev. Lett.80, 4281–4284 (1998). ArticleCAS Google Scholar
Sun, J. Z. Spin–current interaction with a monodomain magnetic body: a model study. Phys. Rev. B62, 570–578 (2000). ArticleCAS Google Scholar
Yang, T., Kimura, K. & Otani, Y. Giant spin-accumulation signal and pure spin-current-induced reversible magnetization switching. Nature Phys.4, 851–854 (2008). ArticleCAS Google Scholar
Sun, J. Z. et al. A three-terminal spin–torque-driven magnetic switch. Appl. Phys. Lett.95, 083506 (2009). Article Google Scholar
Schmidt, G. et al. Fundamental obstacle for electrical spin injection from a ferromagnetic metal into a diffusive semiconductor. Phys. Rev. B62, R4790–R4793 (2000). ArticleCAS Google Scholar
Rashba, E. I. Theory of electrical spin injection: tunnel contacts as a solution of the conductivity mismatch problem. Phys. Rev. B62, R16267–R16270 (2000). ArticleCAS Google Scholar
Jonker, B. T. et al. Electrical spin-injection into silicon from a ferromagnetic metal/tunnel barrier contact. Nature Phys.5, 817–822 (2006). Google Scholar
Appelbaum, I., Huang, B. & Monsma, D. J. Electronic measurement and control of spin transport in silicon. Nature447, 295–298 (2007). ArticleCAS Google Scholar
Lou, X. et al. Electrical detection of spin transport in lateral ferromagnet-semiconductor devices. Nature Phys.3, 197–202 (2007). ArticleCAS Google Scholar
Dash, S. P. et al. Electrical creation of spin polarization in silicon at room temperature. Nature462, 817–822 (2009). Article Google Scholar
Jedeema, F. J. et al. Electrical detection of spin precession in a metallic mesoscopic spin valve. Nature416, 713–716 (2002). ArticleCAS Google Scholar
Huang, B., Monsma, D. J. & Appelbaum, I. Coherent spin transport through a 350 micron thick silicon wafer. Phys. Rev. Lett.99, 177209 (2007). Article Google Scholar
Jang, H. J. et al. Non-ohmic spin transport in n-type doped Si. Phys. Rev. B78, 165329 (2008). Article Google Scholar
Huang, B. & Appelbaum, I. Spin dephasing in drift-dominated semiconductor spintronics devices. Phys. Rev. B77, 165331 (2008). Article Google Scholar
Huang, B., Jang, H. J. & Appelbaum, I. Geometric dephasing-limited Hanle effect in long-distance lateral silicon spin transport devices. Appl. Phys. Lett.93, 162508 (2008). Article Google Scholar
Tombros, N. et al. Electronic spin transport and spin precession in single graphene layers at room temperature. Nature448, 571–574 (2007). ArticleCAS Google Scholar
Shiraishi, M. Spin transport in single- and multi-layer graphene. Proc. IEDM Session 10.5 (2009).
Bennett, C. H. The thermodynamics of computation — a review. Int. J. Theor. Phys.21, 905–940 (1982). ArticleCAS Google Scholar
Likharev, K. K. & Korotkov, A. N. Single-electron parametron: reversible computation in a discrete-state system. Science273, 763–765 (1996). ArticleCAS Google Scholar
Kummamuru, R. K. et al. Operation of a quantum-dot cellular automata (QCA) shift register and analysis of errors. IEEE Trans. Electron. Dev.50, 1906–1913 (2003). ArticleCAS Google Scholar
Mangin, S. et al. Reducing the critical current for spin-transfer switching of perpendicularly magnetized nanomagnets. App. Phys. Lett.94, 012502 (2009). Article Google Scholar
Liu, L., Moriyama, T., Ralph, D. C. & Buhrman, R. A. Reduction of the spin–torque critical current by partially canceling the free layer demagnetization field. Appl. Phys. Lett.94, 122508 (2009). Article Google Scholar
Wakerly, J. F. Digital Design: Principles and Applications (Prentice Hall, 2005). Google Scholar
Ralph, D. C. & Stiles, M. D. Spin transfer torques. J. Magn. Magn. Mater.320, 1190–1216 (2008). ArticleCAS Google Scholar
Sun, J. Z. & Ralph, D. C. Magnetoresistance and spin-transfer torque in magnetic tunnel junctions. J. Magn. Magn. Mater.320, 1227–1237 (2008). ArticleCAS Google Scholar
Lee, O. J. et al. Ultrafast switching of a nanomagnet by a combined out-of-plane and in-plane polarized spin current pulse. Appl. Phys. Lett.95, 012506 (2009). Article Google Scholar
Gallagher, W. J. & Parkin, S. S. P. Development of the magnetic tunnel junction MRAM at IBM: from first junctions to a 16–Mb MRAM demonstrator chip. IBM J. Res. Dev.50, 5–23 (2006). ArticleCAS Google Scholar