Selective transport control on molecular velcro made from intrinsically disordered proteins (original) (raw)

References

  1. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K. & Walter, P. Molecular Biology of the Cell 4th edn (Garland, 2002).
  2. Adam, G. & Delbrück, M. in Structural Chemistry and Molecular Biology (eds Rich, A. & Davidson, N.) 198–215 (W.H. Freeman, 1968).
  3. Berg, O. G. & Vonhippel, P. H. Diffusion-controlled macromolecular interactions. Annu. Rev. Biophys. Biophys. Chem. 14, 131–160 (1985).
    Article CAS Google Scholar
  4. Santer, S. & Ruhe, J. Motion of nano-objects on polymer brushes. Polymer 45, 8279–8297 (2004).
    Article CAS Google Scholar
  5. Denning, D. P., Patel, S. S., Uversky, V., Fink, A. L. & Rexach, M. Disorder in the nuclear pore complex: the FG repeat regions of nucleoporins are natively unfolded. Proc. Natl Acad. Sci. USA 100, 2450–2455 (2003).
    Article CAS Google Scholar
  6. Grunwald, D., Singer, R. H. & Rout, M. Nuclear export dynamics of RNA–protein complexes. Nature 475, 333–341 (2011).
    Article Google Scholar
  7. Jeney, S., Mor, F., Koszali, R., Forro, L. & Moy, V. T. Monitoring ligand–receptor interactions by photonic force microscopy. Nanotechnology 21, 255102 (2010).
  8. Dettmer, S. L., Keyser, U. F. & Pagliara, S. Local characterization of hindered Brownian motion by using digital video microscopy and 3D particle tracking. Rev. Sci. Instrum. 85, 23708 (2014).
    Article Google Scholar
  9. Chook, Y. M. & Sueel, K. E. Nuclear import by karyopherin-betas: recognition and inhibition. Biochim. Biophys. Acta 1813, 1593–1606 (2011).
    Article CAS Google Scholar
  10. Kapinos, L. E., Schoch, R. L., Wagner, R. S., Schleicher, K. D. & Lim, R. Y. H. Karyopherin-centric control of nuclear pores based on molecular occupancy and kinetic analysis of multivalent binding with FG-nucleoporins. Biophys. J. 106, 1751–1762 (2014).
    Article CAS Google Scholar
  11. Stuart, M. A. C. et al. Emerging applications of stimuli-responsive polymer materials. Nature Mater. 9, 101–113 (2010).
    Article Google Scholar
  12. Whitesides, G. M. The origins and the future of microfluidics. Nature 442, 368–373 (2006).
    Article CAS Google Scholar
  13. Van den Heuvel, M. G. L. & Dekker, C. Motor proteins at work for nanotechnology. Science 317, 333–336 (2007).
    Article CAS Google Scholar
  14. Peters, R. Translocation through the nuclear pore complex: selectivity and speed by reduction-of-dimensionality. Traffic 6, 421–427 (2005).
    Article CAS Google Scholar
  15. Elbaum, M. Polymers in the pore. Science 314, 766–767 (2006).
    Article CAS Google Scholar
  16. Jovanovic-Talisman, T. et al. Artificial nanopores that mimic the transport selectivity of the nuclear pore complex. Nature 457, 1023–1027 (2009).
    Article CAS Google Scholar
  17. Kowalczyk, S. W. et al. Single-molecule transport across an individual biomimetic nuclear pore complex. Nature Nanotech. 6, 433–438 (2011).
    Article CAS Google Scholar
  18. Lim, R. Y. H. et al. Nanomechanical basis of selective gating by the nuclear pore complex. Science 318, 640–643 (2007).
    Article CAS Google Scholar
  19. Patel, S. S., Belmont, B. J., Sante, J. M. & Rexach, M. F. Natively unfolded nucleoporins gate protein diffusion across the nuclear pore complex. Cell 129, 83–96 (2007).
    Article CAS Google Scholar
  20. Mammen, M., Choi, S. K. & Whitesides, G. M. Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors. Angew. Chem. Int. Ed. 37, 2755–2794 (1998).
    Article CAS Google Scholar
  21. Isgro, T. A. & Schulten, K. Binding dynamics of isolated nucleoporin repeat regions to importin-beta. Structure 13, 1869–1879 (2005).
    Article CAS Google Scholar
  22. Paradise, A., Levin, M. K., Korza, G. & Carson, J. H. Significant proportions of nuclear transport proteins with reduced intracellular mobilities resolved by fluorescence correlation spectroscopy. J. Mol. Biol. 365, 50–65 (2007).
    Article CAS Google Scholar
  23. Happel, J. & Brenner, H. Low Reynolds Number Hydrodynamics (Martinus Nijhoff, 1983).
  24. Perl, A. et al. Gradient-driven motion of multivalent ligand molecules along a surface functionalized with multiple receptors. Nature Chem. 3, 317–322 (2011).
    Article CAS Google Scholar
  25. Martinez-Veracoechea, F. J. & Frenkel, D. Designing super selectivity in multivalent nano-particle binding. Proc. Natl Acad. Sci. USA 108, 10963–10968 (2011).
    Article CAS Google Scholar
  26. Bormuth, V., Varga, V., Howard, J. & Schaffer, E. Protein friction limits diffusive and directed movements of kinesin motors on microtubules. Science 325, 870–873 (2009).
    Article CAS Google Scholar
  27. Yang, W. D. & Musser, S. M. Nuclear import time and transport efficiency depend on importin beta concentration. J. Cell Biol. 174, 951–961 (2006).
    Article CAS Google Scholar
  28. Tu, L. C., Fu, G., Zilman, A. & Musser, S. M. Large cargo transport by nuclear pores: implications for the spatial organization of FG-nucleoporins. EMBO J. 32, 3220–3230 (2013).
    Article CAS Google Scholar
  29. Jacobson, K., Ishihara, A. & Inman, R. Lateral diffusion of proteins in membranes. Annu. Rev. Physiol. 49, 163–175 (1987).
    Article CAS Google Scholar
  30. Eichmann, S. L., Meric, G., Swavola, J. C. & Bevan, M. A. Diffusing colloidal probes of protein–carbohydrate interactions. Langmuir 29, 2299–2310 (2013).
    Article CAS Google Scholar
  31. Uversky, V. N. Intrinsically disordered proteins from A to Z. Int. J. Biochem. Cell Biol. 43, 1090–1103 (2011).
    Article CAS Google Scholar
  32. Pierres, A., Benoliel, A. M. & Bongrand, P. Measuring the lifetime of bonds made between surface-linked molecules. J. Biol. Chem. 270, 26586–26592 (1995).
    Article CAS Google Scholar
  33. Srinivasan, N. & Kumar, S. Ordered and disordered proteins as nanomaterial building blocks. Nanomed. Nanobiotechnol. 4, 204–218 (2012).
    Article CAS Google Scholar

Download references