Selective transport control on molecular velcro made from intrinsically disordered proteins (original) (raw)
References
Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K. & Walter, P. Molecular Biology of the Cell 4th edn (Garland, 2002).
Adam, G. & Delbrück, M. in Structural Chemistry and Molecular Biology (eds Rich, A. & Davidson, N.) 198–215 (W.H. Freeman, 1968).
Berg, O. G. & Vonhippel, P. H. Diffusion-controlled macromolecular interactions. Annu. Rev. Biophys. Biophys. Chem.14, 131–160 (1985). ArticleCAS Google Scholar
Santer, S. & Ruhe, J. Motion of nano-objects on polymer brushes. Polymer45, 8279–8297 (2004). ArticleCAS Google Scholar
Denning, D. P., Patel, S. S., Uversky, V., Fink, A. L. & Rexach, M. Disorder in the nuclear pore complex: the FG repeat regions of nucleoporins are natively unfolded. Proc. Natl Acad. Sci. USA100, 2450–2455 (2003). ArticleCAS Google Scholar
Grunwald, D., Singer, R. H. & Rout, M. Nuclear export dynamics of RNA–protein complexes. Nature475, 333–341 (2011). Article Google Scholar
Jeney, S., Mor, F., Koszali, R., Forro, L. & Moy, V. T. Monitoring ligand–receptor interactions by photonic force microscopy. Nanotechnology21, 255102 (2010).
Dettmer, S. L., Keyser, U. F. & Pagliara, S. Local characterization of hindered Brownian motion by using digital video microscopy and 3D particle tracking. Rev. Sci. Instrum.85, 23708 (2014). Article Google Scholar
Chook, Y. M. & Sueel, K. E. Nuclear import by karyopherin-betas: recognition and inhibition. Biochim. Biophys. Acta1813, 1593–1606 (2011). ArticleCAS Google Scholar
Kapinos, L. E., Schoch, R. L., Wagner, R. S., Schleicher, K. D. & Lim, R. Y. H. Karyopherin-centric control of nuclear pores based on molecular occupancy and kinetic analysis of multivalent binding with FG-nucleoporins. Biophys. J.106, 1751–1762 (2014). ArticleCAS Google Scholar
Stuart, M. A. C. et al. Emerging applications of stimuli-responsive polymer materials. Nature Mater.9, 101–113 (2010). Article Google Scholar
Whitesides, G. M. The origins and the future of microfluidics. Nature442, 368–373 (2006). ArticleCAS Google Scholar
Van den Heuvel, M. G. L. & Dekker, C. Motor proteins at work for nanotechnology. Science317, 333–336 (2007). ArticleCAS Google Scholar
Peters, R. Translocation through the nuclear pore complex: selectivity and speed by reduction-of-dimensionality. Traffic6, 421–427 (2005). ArticleCAS Google Scholar
Jovanovic-Talisman, T. et al. Artificial nanopores that mimic the transport selectivity of the nuclear pore complex. Nature457, 1023–1027 (2009). ArticleCAS Google Scholar
Kowalczyk, S. W. et al. Single-molecule transport across an individual biomimetic nuclear pore complex. Nature Nanotech.6, 433–438 (2011). ArticleCAS Google Scholar
Lim, R. Y. H. et al. Nanomechanical basis of selective gating by the nuclear pore complex. Science318, 640–643 (2007). ArticleCAS Google Scholar
Patel, S. S., Belmont, B. J., Sante, J. M. & Rexach, M. F. Natively unfolded nucleoporins gate protein diffusion across the nuclear pore complex. Cell129, 83–96 (2007). ArticleCAS Google Scholar
Mammen, M., Choi, S. K. & Whitesides, G. M. Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors. Angew. Chem. Int. Ed.37, 2755–2794 (1998). ArticleCAS Google Scholar
Isgro, T. A. & Schulten, K. Binding dynamics of isolated nucleoporin repeat regions to importin-beta. Structure13, 1869–1879 (2005). ArticleCAS Google Scholar
Paradise, A., Levin, M. K., Korza, G. & Carson, J. H. Significant proportions of nuclear transport proteins with reduced intracellular mobilities resolved by fluorescence correlation spectroscopy. J. Mol. Biol.365, 50–65 (2007). ArticleCAS Google Scholar
Happel, J. & Brenner, H. Low Reynolds Number Hydrodynamics (Martinus Nijhoff, 1983).
Perl, A. et al. Gradient-driven motion of multivalent ligand molecules along a surface functionalized with multiple receptors. Nature Chem.3, 317–322 (2011). ArticleCAS Google Scholar
Martinez-Veracoechea, F. J. & Frenkel, D. Designing super selectivity in multivalent nano-particle binding. Proc. Natl Acad. Sci. USA108, 10963–10968 (2011). ArticleCAS Google Scholar
Bormuth, V., Varga, V., Howard, J. & Schaffer, E. Protein friction limits diffusive and directed movements of kinesin motors on microtubules. Science325, 870–873 (2009). ArticleCAS Google Scholar
Yang, W. D. & Musser, S. M. Nuclear import time and transport efficiency depend on importin beta concentration. J. Cell Biol.174, 951–961 (2006). ArticleCAS Google Scholar
Tu, L. C., Fu, G., Zilman, A. & Musser, S. M. Large cargo transport by nuclear pores: implications for the spatial organization of FG-nucleoporins. EMBO J.32, 3220–3230 (2013). ArticleCAS Google Scholar
Jacobson, K., Ishihara, A. & Inman, R. Lateral diffusion of proteins in membranes. Annu. Rev. Physiol.49, 163–175 (1987). ArticleCAS Google Scholar
Eichmann, S. L., Meric, G., Swavola, J. C. & Bevan, M. A. Diffusing colloidal probes of protein–carbohydrate interactions. Langmuir29, 2299–2310 (2013). ArticleCAS Google Scholar
Uversky, V. N. Intrinsically disordered proteins from A to Z. Int. J. Biochem. Cell Biol.43, 1090–1103 (2011). ArticleCAS Google Scholar
Pierres, A., Benoliel, A. M. & Bongrand, P. Measuring the lifetime of bonds made between surface-linked molecules. J. Biol. Chem.270, 26586–26592 (1995). ArticleCAS Google Scholar
Srinivasan, N. & Kumar, S. Ordered and disordered proteins as nanomaterial building blocks. Nanomed. Nanobiotechnol.4, 204–218 (2012). ArticleCAS Google Scholar