Constitutive and Acquired Serotonin Deficiency Alters Memory and Hippocampal Synaptic Plasticity (original) (raw)
Adell A, Carceller A, Artigas F (1993). In vivo brain dialysis study of the somatodendritic release of serotonin in the Raphe nuclei of the rat: effects of 8-hydroxy-2-(di-n-propylamino)tetralin. J Neurochem60: 1673–1681. CASPubMed Google Scholar
Babar E, Melik E, Ozgünen T, Polat S (2002). Effects of excitotoxic median raphe lesion on working memory deficits produced by the dorsal hippocampal muscarinic receptor blockade in the inhibitory avoidance in rats. Brain Res Bull57: 683–688. ArticleCASPubMed Google Scholar
Balleine BW, Liljeholm M, Ostlund SB (2009). The integrative function of the basal ganglia in instrumental conditioning. Behav Brain Res199: 43–52. ArticlePubMed Google Scholar
Barnes NM, Sharp T (1999). A review of central 5-HT receptors and their function. Neuropharmacology38: 1083–1152. CASPubMed Google Scholar
Bielsky IF, Young LJ (2004). Oxytocin, vasopressin, and social recognition in mammals. Peptides25: 1565–1574. ArticleCASPubMed Google Scholar
Buhot MC, Martin S, Segu L (2000). Role of serotonin in memory impairment. Ann Med32: 210–221. ArticleCASPubMed Google Scholar
Cai X, Kallarackal AJ, Kvarta MD, Goluskin S, Gaylor K, Bailey AM et al (2013). Local potentiation of excitatory synapses by serotonin and its alteration in rodent models of depression. Nat Neurosci16: 464–472. ArticleCASPubMedPubMed Central Google Scholar
Castaneda AE, Tuulio-Henriksson A, Marttunen M, Suvisaari J, Lönnqvist J (2008). A review on cognitive impairments in depressive and anxiety disorders with a focus on young adults. J Affect Disord106: 1–27. ArticlePubMed Google Scholar
Chen CP, Alder JT, Bowen DM, Esiri MM, McDonald B, Hope T et al (1996). Presynaptic serotonergic markers in community-acquired cases of Alzheimer’s disease: correlations with depression and neuroleptic medication. J Neurochem66: 1592–1598. ArticleCASPubMed Google Scholar
Clarke JR, Cammarota M, Gruart A, Izquierdo I, Delgado-García JM (2010). Plastic modifications induced by object recognition memory processing. Proc Natl Acad Sci USA107: 2652–2657. ArticleCASPubMedPubMed Central Google Scholar
Cohen SJ, Munchow AH, Rios LM, Zhang G, Asgeirsdóttir HN, Stackman RWJ (2013). The rodent hippocampus is essential for nonspatial object memory. Curr Biol23: 1685–1690. ArticleCASPubMedPubMed Central Google Scholar
Costa L, Trovato C, Musumeci SA, Catania MV, Ciranna L (2011). 5-HT(1A) and 5-HT(7) receptors differently modulate AMPA receptor-mediated hippocampal synaptic transmission. Hippocampus22: 790–801. ArticlePubMed Google Scholar
Dai J-X, Han H-L, Tian M, Cao J, Xiu J-B, Song N-N et al (2008). Enhanced contextual fear memory in central serotonin-deficient mice. Proc Natl Acad Sci USA105: 11981–11986. ArticleCASPubMedPubMed Central Google Scholar
Dale E, Pehrson AL, Jeyarajah T, Li Y, Leiser SC, Smagin G et al (2015). Effects of serotonin in the hippocampus: how SSRIs and multimodal antidepressants might regulate pyramidal cell function. CNS Spectr21: 143–161 1–19. ArticlePubMedPubMed Central Google Scholar
De Anna F, Felician O, Barbeau E, Mancini J, Didic M, Ceccaldi M (2014). Cognitive changes in mild cognitive impairment patients with impaired visual recognition memory. Neuropsychology28: 98–105. ArticlePubMed Google Scholar
du Jardin KG, Jensen JB, Sanchez C, Pehrson AL (2014). Vortioxetine dose-dependently reverses 5-HT depletion-induced deficits in spatial working and object recognition memory: A potential role for 5-HT1A receptor agonism and 5-HT3 receptor antagonism. Eur Neuropsychopharmacol24: 160–171. ArticleCASPubMed Google Scholar
Fernandez SP, Gaspar P (2012). Investigating anxiety and depressive-like phenotypes in genetic mouse models of serotonin depletion. Neuropharmacology62: 144–154. ArticleCASPubMed Google Scholar
Freeman-Daniels E, Beck SG, Kirby LG (2011). Cellular correlates of anxiety in CA1 hippocampal pyramidal cells of 5-HT1A receptor knockout mice. Psychopharmacology (Berl)213: 453–463. ArticleCAS Google Scholar
Geldenhuys WJ, Van der Schyf CJ (2011). Role of serotonin in Alzheimer’s disease: a new therapeutic target? CNS Drugs25: 765–781. ArticleCASPubMed Google Scholar
Gruart A, Muñoz MD, Delgado-García JM (2006). Involvement of the CA3-CA1 synapse in the acquisition of associative learning in behaving mice. J Neurosci26: 1077–1087. ArticleCASPubMedPubMed Central Google Scholar
Harmer CJ (2008). Serotonin and emotional processing: does it help explain antidepressant drug action? Neuropharmacology55: 1023–1028. ArticleCASPubMed Google Scholar
Hedge SS, Moy TM, Perry MR, Loeb M, Eglen RM (1994). Evidence for the involvement of 5-hydroxytryptamine 4 receptors in 5-hydroxytryptophan-induced diarrhea in mice. J Pharmacol Exp Ther271: 741–747. CASPubMed Google Scholar
Hendricks TJ, Fyodorov DV, Wegman LJ, Lelutiu NB, Pehek EA, Yamamoto B et al (2003). Pet-1 ETS gene plays a critical role in 5-HT neuron development and is required for normal anxiety-like and aggressive behavior. Neuron37: 233–247. ArticleCASPubMed Google Scholar
Heninger GR, Delgado PL, Charney DS (1996). The revised monoamine theory of depression: a modulatory role for monoamines, based on new findings from monoamine depletion experiments in humans. Pharmacopsychiatry29: 2–11. ArticleCASPubMed Google Scholar
Herry C, Ferraguti F, Singewald N, Letzkus JJ, Ehrlich I, Lüthi A (2010). Neuronal circuits of fear extinction. Eur J Neurosci31: 599–612. ArticlePubMed Google Scholar
Hikosaka O, Nakahara H, Rand MK, Sakai K, Lu X, Nakamura K et al (1999). Parallel neural networks for learning sequential procedures. Trends Neurosci22: 464–471. ArticleCASPubMed Google Scholar
Hökfelt T, Fuxe K, Goldstein M (1973). Immunohistochemical localization of aromatic L-amino acid decarboxylase (DOPA decarboxylase) in central dopamine and 5-hydroxytryptamine nerve cell bodies of the rat. Brain Res53: 175–180. ArticlePubMed Google Scholar
Holmes A (2008). Genetic variation in cortico-amygdala serotonin function and risk for stress-related disease. Neurosci Biobehav Rev32: 1293–1314. ArticleCASPubMedPubMed Central Google Scholar
Imai H, Steindler DA, Kitai ST (1986). The organization of divergent axonal projections from the midbrain raphe nuclei in the rat. J Comp Neurol243: 363–380. ArticleCASPubMed Google Scholar
Isoda K, Morimoto M, Matsui F, Hasegawa T, Tozawa T, Morioka S et al (2010). Postnatal changes in serotonergic innervation to the hippocampus of methyl-CpG-binding protein 2-null mice. Neuroscience165: 1254–1260. ArticleCASPubMed Google Scholar
Jacobs BL, Azmitia EC (1992). Structure and function of the brain serotonin system. Physiol Rev72: 165–229. ArticleCASPubMed Google Scholar
Jacobsen JPR, Medvedev IO, Caron MG (2012). The 5-HT deficiency theory of depression: perspectives from a naturalistic 5-HT deficiency model, the tryptophan hydroxylase 2Arg439His knockin mouse. Philos Trans R Soc Lond B Biol Sci367: 2444–2459. ArticleCASPubMedPubMed Central Google Scholar
Javoy-Agid F, Ruberg M, Taquet H, Bokobza B, Agid Y, Gaspar P et al (1984). Biochemical neuropathology of Parkinson’s disease. Adv Neurol40: 189–198. CASPubMed Google Scholar
Kim M-H, Choi J, Yang J, Chung W, Kim J-H, Paik SK et al (2009). Enhanced NMDA receptor-mediated synaptic transmission, enhanced long-term potentiation, and impaired learning and memory in mice lacking IRSp53. J Neurosci29: 1586–1595. ArticleCASPubMedPubMed Central Google Scholar
Kinnavane L, Albasser MM, Aggleton JP (2015). Advances in the behavioural testing and network imaging of rodent recognition memory. Behav Brain Res285: 67–78. ArticlePubMedPubMed Central Google Scholar
Kish SJ, Tong J, Hornykiewicz O, Rajput A, Chang L-J, Guttman M et al (2008). Preferential loss of serotonin markers in caudate versus putamen in Parkinson’s disease. Brain131: 120–131. PubMed Google Scholar
Kiyasova V, Fernandez SP, Laine J, Stankovski L, Muzerelle A, Doly S et al (2011). A genetically defined morphologically and functionally unique subset of 5-HT neurons in the mouse raphe nuclei. J Neurosci31: 2756–2768. ArticleCASPubMedPubMed Central Google Scholar
Kocsis B, Varga V, Dahan L, Sik A (2006). Serotonergic neuron diversity: identification of raphe neurons with discharges time-locked to the hippocampal theta rhythm. Proc Natl Acad Sci USA103: 1059–1064. ArticleCASPubMedPubMed Central Google Scholar
LaBar KS, Cabeza R (2006). Cognitive neuroscience of emotional memory. Nat Rev Neurosci7: 54–64. ArticleCASPubMed Google Scholar
Lai MKP, Tsang SWY, Francis PT, Keene J, Hope T, Esiri MM et al (2002). Postmortem serotoninergic correlates of cognitive decline in Alzheimer’s disease. Neuroreport13: 1175–1178. ArticleCASPubMed Google Scholar
Lieben CK, Oorsouw K, van, Deutz NE, Blokland A (2004). Acute tryptophan depletion induced by a gelatin-based mixture impairs object memory but not affective behavior and spatial learning in the rat. Behav Brain Res151: 53–64. ArticleCASPubMed Google Scholar
Liu Z, Zhou J, Li Y, Hu F, Lu Y, Ma M et al (2014). Dorsal raphe neurons signal reward through 5-HT and glutamate. Neuron81: 1360–1374. ArticleCASPubMedPubMed Central Google Scholar
Marazziti D, Consoli G, Picchetti M, Carlini M, Faravelli L (2010). Cognitive impairment in major depression. Eur J Pharmacol626: 83–86. ArticleCASPubMed Google Scholar
McDevitt RA, Tiran-Cappello A, Shen H, Balderas I, Britt JP, Marino RAM et al (2014). Serotonergic versus nonserotonergic dorsal raphe projection neurons: differential participation in reward circuitry. Cell Rep8: 1857–1869. ArticleCASPubMedPubMed Central Google Scholar
McQuade R, Sharp T (1997). Functional mapping of dorsal and median raphe 5-hydroxytryptamine pathways in forebrain of the rat using microdialysis. J Neurochem69: 791–796. ArticleCASPubMed Google Scholar
Migaud M, Charlesworth P, Dempster M, Webster LC, Watabe AM, Makhinson M et al (1998). Enhanced long-term potentiation and impaired learning in mice with mutant postsynaptic density-95 protein. Nature396: 433–439. ArticleCASPubMed Google Scholar
Millan MJ, Agid Y, Brüne M, Bullmore ET, Carter CS, Clayton NS et al (2012). Cognitive dysfunction in psychiatric disorders: characteristics, causes and the quest for improved therapy. Nat Rev Drug Discov11: 141–168. ArticleCASPubMed Google Scholar
Mosienko V, Beis D, Pasqualetti M, Waider J, Matthes S, Qadri F et al (2015). Life without brain serotonin: reevaluation of serotonin function with mice deficient in brain serotonin synthesis. Behav Brain Res277: 78–88. ArticleCASPubMed Google Scholar
Muzerelle A, Scotto-Lomassese S, Bernard JF, Soiza-Reilly M, Gaspar P (2016). Conditional anterograde tracing reveals distinct targeting of individual serotonin cell groups (B5-B9) to the forebrain and brainstem. Brain Struct Funct221: 535–561. ArticleCASPubMed Google Scholar
Narboux-Nême N, Sagné C, Doly S, Diaz SL, Martin CBP, Angenard G et al (2011). Severe serotonin depletion after conditional deletion of the vesicular monoamine transporter 2 gene in serotonin neurons: neural and behavioral consequences. Neuropsychopharmacology36: 2538–2550. ArticlePubMedPubMed Central Google Scholar
Neves G, Cooke SF, Bliss TVP (2008). Synaptic plasticity, memory and the hippocampus: a neural network approach to causality. Nat Rev Neurosci9: 65–75. ArticleCASPubMed Google Scholar
Ohmura Y, Izumi T, Yamaguchi T, Tsutsui-Kimura I, Yoshida T, Yoshioka M (2010). The serotonergic projection from the median raphe nucleus to the ventral hippocampus is involved in the retrieval of fear memory through the corticotropin-releasing factor type 2 receptor. Neuropsychopharmacology35: 1271–1278. ArticleCASPubMedPubMed Central Google Scholar
Olivier JDA, Jans LAW, Korte-Bouws GAH, Korte SM, Deen PMT, Cools AR et al (2008). Acute tryptophan depletion dose dependently impairs object memory in serotonin transporter knockout rats. Psychopharmacology (Berl)200: 243–254. ArticleCAS Google Scholar
Paxinos G, Franklin KBJ . The Mouse Brain in Stereotaxic Coordinates, 1st edn. Gulf Professional Publishing: Amsterdam; Boston, MA, 2004. Google Scholar
Phelps EA (2004). Human emotion and memory: interactions of the amygdala and hippocampal complex. Curr Opin Neurobiol14: 198–202. ArticleCASPubMed Google Scholar
Pineda VV, Athos JI, Wang H, Celver J, Ippolito D, Boulay G et al (2004). Removal of G(ialpha1) constraints on adenylyl cyclase in the hippocampus enhances LTP and impairs memory formation. Neuron41: 153–163. ArticleCASPubMed Google Scholar
Pugliese AM, Passani MB, Corradetti R (1998). Effect of the selective 5-HT1A receptor antagonist WAY 100635 on the inhibition of e.p.s.ps produced by 5-HT in the CA1 region of rat hippocampal slices. Br J Pharmacol124: 93–100. ArticleCASPubMed Google Scholar
Qamhawi Z, Towey D, Shah B, Pagano G, Seibyl J, Marek K et al (2015). Clinical correlates of raphe serotonergic dysfunction in early Parkinson’s disease. Brain138: 2964–2973. ArticlePubMed Google Scholar
Qi J, Zhang S, Wang H-L, Wang H, de Jesus Aceves Buendia J, Hoffman AF et al (2014). A glutamatergic reward input from the dorsal raphe to ventral tegmental area dopamine neurons. Nat Commun5: 5390. ArticleCASPubMed Google Scholar
Riedel WJ, Klaassen T, Deutz NE, van Someren A, van Praag HM (1999). Tryptophan depletion in normal volunteers produces selective impairment in memory consolidation. Psychopharmacology (Berl)141: 362–369. ArticleCAS Google Scholar
Sachs BD, Ni JR, Caron MG (2015). Brain 5-HT deficiency increases stress vulnerability and impairs antidepressant responses following psychosocial stress. Proc Natl Acad Sci USA112: 2557–2562. ArticleCASPubMedPubMed Central Google Scholar
Schmitt JAJ, Wingen M, Ramaekers JG, Evers EAT, Riedel WJ (2006). Serotonin and human cognitive performance. Curr Pharm Des12: 2473–2486. ArticleCASPubMed Google Scholar
Scott MM, Deneris ES (2005). Making and breaking serotonin neurons and autism. Int J Dev Neurosci23: 277–285. ArticleCASPubMed Google Scholar
Seidel K, Mahlke J, Siswanto S, Krüger R, Heinsen H, Auburger G et al (2015). The brainstem pathologies of Parkinson’s disease and dementia with Lewy bodies. Brain Pathol25: 121–135. ArticlePubMed Google Scholar
Silber BY, Schmitt JAJ (2010). Effects of tryptophan loading on human cognition, mood, and sleep. Neurosci Biobehav Rev34: 387–407. ArticleCASPubMed Google Scholar
Squire LR, Wixted JT, Clark RE (2007). Recognition memory and the medial temporal lobe: a new perspective. Nat Rev Neurosci8: 872–883. ArticleCASPubMedPubMed Central Google Scholar
Squire LR, Zola SM (1996). Structure and function of declarative and nondeclarative memory systems. Proc Natl Acad Sci USA93: 13515–13522. ArticleCASPubMedPubMed Central Google Scholar
Takeuchi T, Duszkiewicz AJ, Morris RGM (2014). The synaptic plasticity and memory hypothesis: encoding, storage and persistence. Philos Trans R Soc Lond B Biol Sci369: 20130288. ArticlePubMedPubMed Central Google Scholar
Teissier A, Chemiakine A, Inbar B, Bagchi S, Ray RS, Palmiter RD et al (2015). Activity of raphé serotonergic neurons controls emotional behaviors. Cell Rep13: 1965–1976. ArticleCASPubMedPubMed Central Google Scholar
Temudo T, Rios M, Prior C, Carrilho I, Santos M, Maciel P et al (2009). Evaluation of CSF neurotransmitters and folate in 25 patients with Rett disorder and effects of treatment. Brain Dev31: 46–51. ArticleCASPubMed Google Scholar
Uetani N, Kato K, Ogura H, Mizuno K, Kawano K, Mikoshiba K et al (2000). Impaired learning with enhanced hippocampal long-term potentiation in PTPdelta-deficient mice. EMBO J19: 2775–2785. ArticleCASPubMedPubMed Central Google Scholar
Varga V, Losonczy A, Zemelman BV, Borhegyi Z, Nyiri G, Domonkos A et al (2009). Fast synaptic subcortical control of hippocampal circuits. Science326: 449–453. ArticleCASPubMed Google Scholar
Vertes RP, Fortin WJ, Crane AM (1999). Projections of the median raphe nucleus in the rat. J Comp Neurol407: 555–582. ArticleCASPubMed Google Scholar
Wang DV, Yau H-J, Broker CJ, Tsou J-H, Bonci A, Ikemoto S (2015). Mesopontine median raphe regulates hippocampal ripple oscillation and memory consolidation. Nat Neurosci18: 728–735. ArticleCASPubMedPubMed Central Google Scholar
Winstanley CA, Dalley JW, Theobald DEH, Robbins TW (2004). Fractionating impulsivity: contrasting effects of central 5-HT depletion on different measures of impulsive behavior. Neuropsychopharmacology29: 1331–1343. ArticleCASPubMed Google Scholar