Kunz-Schughart, L.A., Freyer, J.P., Hofstaedter, F. & Ebner, R. The use of 3-D cultures for high-throughput screening: the multicellular spheroid model. J. Biomol. Screen9, 273–285 (2004). ArticleCASPubMed Google Scholar
Friedrich, J. et al. A reliable tool to determine cell viability in complex 3-d culture: the Acid phosphatase assay. J. Biomol. Screen.12, 925–937 (2007). ArticleCASPubMed Google Scholar
Gudjonsson, T., Ronnov-Jessen, L., Villadsen, R., Bissell, M.J. & Petersen, O.W. To create the correct microenvironment: three-dimensional heterotypic collagen assays for human breast epithelial morphogenesis and neoplasia. Methods30, 247–255 (2003). ArticleCASPubMedPubMed Central Google Scholar
Nelson, C.M. & Bissell, M.J. Modeling dynamic reciprocity: engineering three-dimensional culture models of breast architecture, function, and neoplastic transformation. Semin. Cancer Biol.15, 342–352 (2005). ArticlePubMedPubMed Central Google Scholar
Lee, G.Y., Kenny, P.A., Lee, E.H. & Bissell, M.J. Three-dimensional culture models of normal and malignant breast epithelial cells. Nat. Methods4, 359–365 (2007). ArticleCASPubMedPubMed Central Google Scholar
Friedrich, J., Ebner, R. & Kunz-Schughart, L.A. Experimental anti-tumor therapy in 3-D: spheroids—old hat or new challenge? Int. J. Radiat. Biol.83, 849–871 (2007). ArticleCASPubMed Google Scholar
Mueller-Klieser, W. Multicellular spheroids. A review on cellular aggregates in cancer research. J. Cancer Res. Clin. Oncol.113, 101–122 (1987). ArticleCASPubMed Google Scholar
Kunz-Schughart, L.A., Kreutz, M. & Knuechel, R. Multicellular spheroids: a three-dimensional in vitro culture system to study tumour biology. Int. J. Exp. Pathol.79, 1–23 (1998). ArticleCASPubMedPubMed Central Google Scholar
Santini, M.T. & Rainaldi, G. Three-dimensional spheroid model in tumor biology. Pathobiology67, 148–157 (1999). ArticleCASPubMed Google Scholar
Khaitan, D., Chandna, S., Arya, M.B. & Dwarakanath, B.S. Establishment and characterization of multicellular spheroids from a human glioma cell line: implications for tumor therapy. J. Transl. Med.4, 12 (2006). ArticleCASPubMedPubMed Central Google Scholar
Dubessy, C., Merlin, J.M., Marchal, C. & Guillemin, F. Spheroids in radiobiology and photodynamic therapy. Crit. Rev. Oncol. Hematol.36, 179–192 (2000). ArticleCASPubMed Google Scholar
Ballangrud, A.M. et al. Response of LNCaP spheroids after treatment with an alpha-particle emitter (213Bi)-labeled anti-prostate-specific membrane antigen antibody (J591). Cancer Res.61, 2008–2014 (2001). CASPubMed Google Scholar
Durand, R.E. & Olive, P.L. Resistance of tumor cells to chemo- and radiotherapy modulated by the three-dimensional architecture of solid tumors and spheroids. Methods Cell Biol.64, 211–233 (2001). ArticleCASPubMed Google Scholar
Mueller-Klieser, W. Three-dimensional cell cultures: from molecular mechanisms to clinical applications. Am. J. Physiol.273, C1109–C1123 (1997). ArticleCASPubMed Google Scholar
Al-Hajj, M., Becker, M.W., Wicha, M., Weissman, I. & Clarke, M.F. Therapeutic implications of cancer stem cells. Curr. Opin. Genet. Dev.14, 43–7 (2004). ArticleCASPubMed Google Scholar
Vermeulen, L. et al. Single-cell cloning of colon cancer stem cells reveals a multi-lineage differentiation capacity. Proc. Natl. Acad. Sci. USA105, 13427–13432 (2008). ArticleCASPubMedPubMed Central Google Scholar
Barbone, D., Yang, T.M., Morgan, J.R., Gaudino, G. & Broaddus, V.C. Mammalian target of rapamycin contributes to the acquired apoptotic resistance of human mesothelioma multicellular spheroids. J. Biol. Chem.283, 13021–13030 (2008). ArticleCASPubMedPubMed Central Google Scholar
Desoize, B. & Jardillier, J. Multicellular resistance: a paradigm for clinical resistance? Crit. Rev. Oncol. Hematol.36, 193–207 (2000). ArticleCASPubMed Google Scholar
Mueller-Klieser, W. Tumor biology and experimental therapeutics. Crit. Rev. Oncol. Hematol.36, 123–139 (2000). ArticleCASPubMed Google Scholar
Carlsson, J. & Acker, H. Relations between pH, oxygen partial pressure and growth in cultured cell spheroids. Int. J. Cancer42, 715–720 (1988). ArticleCASPubMed Google Scholar
Poland, J. et al. Comparison of protein expression profiles between monolayer and spheroid cell culture of HT-29 cells revealed fragmentation of CK18 in three-dimensional cell culture. Electrophoresis23, 1174–1184 (2002). ArticleCASPubMed Google Scholar
Frankel, A., Man, S., Elliott, P., Adams, J. & Kerbel, R.S. Lack of multicellular drug resistance observed in human ovarian and prostate carcinoma treated with the proteasome inhibitor PS-341. Clin. Cancer Res.6, 3719–3728 (2000). CASPubMed Google Scholar
Eshleman, J.S. et al. Inhibition of the mammalian target of rapamycin sensitizes U87 xenografts to fractionated radiation therapy. Cancer Res.62, 7291–7297 (2002). CASPubMed Google Scholar
Oloumi, A., Lam, W., Banath, J.P. & Olive, P.L. Identification of genes differentially expressed in V79 cells grown as multicell spheroids. Int. J. Radiat. Biol.78, 483–492 (2002). ArticleCASPubMed Google Scholar
Jelic, S. Molecular basis of future patients-tailored treatment. Arch. Oncol.13, 56–58 (2005). Google Scholar
Liu, M. et al. Antitumor activity of rapamycin in a transgenic mouse model of ErbB2-dependent human breast cancer. Cancer Res.65, 5325–5336 (2005). ArticleCASPubMed Google Scholar
Dardousis, K. et al. Identification of differentially expressed genes involved in the formation of multicellular tumor spheroids by HT-29 colon carcinoma cells. Mol. Ther.15, 94–102 (2007). ArticleCASPubMed Google Scholar
Howes, A.L. et al. The phosphatidylinositol 3-kinase inhibitor, PX-866, is a potent inhibitor of cancer cell motility and growth in three-dimensional cultures. Mol. Cancer Ther.6, 2505–2514 (2007). ArticleCASPubMed Google Scholar
Kunz-Schughart, L.A. Multicellular tumor spheroids: intermediates between monolayer culture and in vivo tumor. Cell Biol. Int.23, 157–161 (1999). ArticleCASPubMed Google Scholar
Furbert-Harris, P.M. et al. Eosinophils in a tri-cell multicellular tumor spheroid (MTS)/endothelium complex. Cell Mol. Biol.49, 1081–1088 (2003). CASPubMed Google Scholar
Gottfried, E., Kunz-Schughart, L.A., Andreesen, R. & Kreutz, M. Brave little world: spheroids as an in vitro model to study tumor-immune-cell interactions. Cell Cycle5, 691–695 (2006). ArticleCASPubMed Google Scholar
Spoettl, T. et al. Monocyte chemoattractant protein-1 (MCP-1) inhibits the intestinal-like differentiation of monocytes. Clin. Exp. Immunol.145, 190–199 (2006). ArticleCASPubMedPubMed Central Google Scholar
Wartenberg, M., Finkensieper, A., Hescheler, J. & Sauer, H. Confrontation cultures of embryonic stem cells with multicellular tumor spheroids to study tumor-induced angiogenesis. Methods Mol. Biol.331, 313–328 (2006). PubMed Google Scholar
Gunther, S. et al. Polyphenols prevent cell shedding from mouse mammary cancer spheroids and inhibit cancer cell invasion in confrontation cultures derived from embryonic stem cells. Cancer Lett.250, 25–35 (2007). ArticleCASPubMed Google Scholar
Li, Z.W. & Dalton, W.S. Tumor microenvironment and drug resistance in hematologic malignancies. Blood Rev.20, 333–342 (2006). ArticlePubMed Google Scholar
Kunz-Schughart, L.A. & Mueller-Klieser, W. Three-dimensional culture. In Animal Cell Culture Vol. 3 (Ed. Masters, J.R.W.) 123–148 (Oxford University Press, Oxford, 2000). Google Scholar
Stark, H.J., Baur, M., Breitkreutz, D., Mirancea, N. & Fusenig, N.E. Organotypic keratinocyte cocultures in defined medium with regular epidermal morphogenesis and differentiation. J. Invest. Dermatol.112, 681–691 (1999). ArticleCASPubMed Google Scholar
Stark, H.J. et al. Epidermal homeostasis in long-term scaffold-enforced skin equivalents. J. Investig. Dermatol. Symp. Proc.11, 93–105 (2006). ArticleCASPubMed Google Scholar
Korff, T. & Augustin, H.G. Integration of endothelial cells in multicellular spheroids prevents apoptosis and induces differentiation. J. Cell Biol.143, 1341–1352 (1998). ArticleCASPubMedPubMed Central Google Scholar
Ivascu, A. & Kubbies, M. Rapid generation of single-tumor spheroids for high-throughput cell function and toxicity analysis. J. Biomol. Screen11, 922–932 (2006). ArticleCASPubMed Google Scholar
Kosaka, T. et al. Comparison of various methods of assaying the cytotoxic effects of ethanol on human hepatoblastoma cells (HUH-6 line). Acta. Med. Okayama50, 151–156 (1996). CASPubMed Google Scholar
Enmon, R. et al. Combination treatment with 17-_N_-allylamino-17-demethoxy geldanamycin and acute irradiation produces supra-additive growth suppression in human prostate carcinoma spheroids. Cancer Res.63, 8393–8399 (2003). CASPubMed Google Scholar
Fehlauer, F. et al. Effects of irradiation and cisplatin on human glioma spheroids: inhibition of cell proliferation and cell migration. J. Cancer Res. Clin. Oncol.131, 723–732 (2005). ArticleCASPubMed Google Scholar
Lambert, B. et al. Screening for supra-additive effects of cytotoxic drugs and gamma irradiation in an in vitro model for hepatocellular carcinoma. Can. J. Physiol. Pharmacol.82, 146–152 (2004). ArticleCASPubMed Google Scholar
Sutherland, R.M. Cell and environment interactions in tumor microregions: the multicell spheroid model. Science240, 177–184 (1988). ArticleCASPubMed Google Scholar
LaRue, K.E., Khalil, M. & Freyer, J.P. Microenvironmental regulation of proliferation in multicellular spheroids is mediated through differential expression of cyclin-dependent kinase inhibitors. Cancer Res.64, 1621–1631 (2004). ArticleCASPubMed Google Scholar
Francia, G., Man, S., Teicher, B., Grasso, L. & Kerbel, R.S. Gene expression analysis of tumor spheroids reveals a role for suppressed DNA mismatch repair in multicellular resistance to alkylating agents. Mol. Cell. Biol.24, 6837–6849 (2004). ArticleCASPubMedPubMed Central Google Scholar
Francia, G. et al. Down-regulation of DNA mismatch repair proteins in human and murine tumor spheroids: implications for multicellular resistance to alkylating agents. Mol. Cancer Ther.4, 1484–1494 (2005). ArticleCASPubMed Google Scholar
Bindra, R.S., Crosby, M.E. & Glazer, P.M. Regulation of DNA repair in hypoxic cancer cells. Cancer Metastasis Rev26, 249–260 (2007). ArticleCASPubMed Google Scholar
Romero, F.J., Zukowski, D. & Mueller-Klieser, W. Glutathione content of V79 cells in two- or three-dimensional culture. Am. J. Physiol.272, C1507–C1512 (1997). ArticleCASPubMed Google Scholar
Winters, B.S., Raj, B.K., Robinson, E.E., Foty, R.A. & Corbett, S.A. Three-dimensional culture regulates Raf-1 expression to modulate fibronectin matrix assembly. Mol. Biol. Cell17, 3386–3396 (2006). ArticleCASPubMedPubMed Central Google Scholar
Carlsson, J. & Yuhas, J.M. Liquid-overlay culture of cellular spheroids. Recent Results Cancer Res.95, 1–23 (1984). ArticleCASPubMed Google Scholar
Tong, J.Z. et al. Long-term culture of adult rat hepatocyte spheroids. Exp. Cell Res.200, 326–332 (1992). ArticleCASPubMed Google Scholar
Hoevel, T., Macek, R., Swisshelm, K. & Kubbies, M. Reexpression of the TJ protein CLDN1 induces apoptosis in breast tumor spheroids. Int. J. Cancer108, 374–383 (2004). ArticleCASPubMed Google Scholar
Wartenberg, M. et al. Development of an intrinsic P-glycoprotein-mediated doxorubicin resistance in quiescent cell layers of large, multicellular prostate tumor spheroids. Int. J. Cancer75, 855–863 (1998). ArticleCASPubMed Google Scholar
Kunz-Schughart, L.A. & Freyer, J.P. Adaptation of an automated selective dissociation procedure to two novel spheroid types. In Vitro Cell. Dev. Biol. Anim.33, 73–76 (1997). ArticleCASPubMed Google Scholar
Kerr, D.J., Wheldon, T.E., Kerr, A.M. & Kaye, S.B. In vitro chemosensitivity testing using the multicellular tumor spheroid model. Cancer Drug Deliv.4, 63–74 (1987). ArticleCASPubMed Google Scholar
Durand, R.E. Slow penetration of anthracyclines into spheroids and tumors: a therapeutic advantage? Cancer Chemother. Pharmacol.26, 198–204 (1990). ArticleCASPubMed Google Scholar
Freyer, J.P. & Schor, P.L. Automated selective dissociation of cells from different regions of multicellular spheroids. In Vitro Cell Dev. Biol.25, 9–19 (1989). ArticleCASPubMed Google Scholar
Watanabe, N., Hirayama, R. & Kubota, N. The chemopreventive flavonoid apigenin confers radiosensitizing effect in human tumor cells grown as monolayers and spheroids. J. Radiat. Res. (Tokyo)48, 45–50 (2007). ArticleCAS Google Scholar
Essand, M., Nilsson, S. & Carlsson, J. Growth of prostatic cancer cells, DU 145, as multicellular spheroids and effects of estramustine. Anticancer Res.13, 1261–1268 (1993). CASPubMed Google Scholar
Russell, J., Wheldon, T.E. & Stanton, P. A radioresistant variant derived from a human neuroblastoma cell line is less prone to radiation-induced apoptosis. Cancer Res.55, 4915–4921 (1995). CASPubMed Google Scholar
Marusic, M., Bajzer, Z., Vuk-Pavlovic, S. & Freyer, J.P. Tumor growth in vivo and as multicellular spheroids compared by mathematical models. Bull. Math. Biol.56, 617–631 (1994). CASPubMed Google Scholar
Kunz-Schughart, L.A., Groebe, K. & Mueller-Klieser, W. Three-dimensional cell culture induces novel proliferative and metabolic alterations associated with oncogenic transformation. Int. J. Cancer66, 578–586 (1996). ArticleCASPubMed Google Scholar
Tabatabai, M., Williams, D.K. & Bursac, Z. Hyperbolastic growth models: theory and application. Theor. Biol. Med. Model.2, 14–15 (2005). ArticlePubMedPubMed Central Google Scholar
Mellor, H.R., Ferguson, D.J. & Callaghan, R. A model of quiescent tumour microregions for evaluating multicellular resistance to chemotherapeutic drugs. Br. J. Cancer93, 302–309 (2005). ArticleCASPubMedPubMed Central Google Scholar
Orlandi, P. et al. Idarubicin and idarubicinol effects on breast cancer multicellular spheroids. J. Chemother.17, 663–667 (2005). ArticleCASPubMed Google Scholar
Lambert, B. et al. Assessment of supra-additive effects of cytotoxic drugs and low dose rate irradiation in an in vitro model for hepatocellular carcinoma. Can. J. Physiol. Pharmacol.84, 1021–1028 (2006). ArticleCASPubMed Google Scholar
Hirschberg, H., Sun, C.H., Krasieva, T. & Madsen, S.J. Effects of ALA-mediated photodynamic therapy on the invasiveness of human glioma cells. Lasers Surg. Med.38, 939–945 (2006). ArticlePubMed Google Scholar
Minchinton, A.I. & Tannock, I.F. Drug penetration in solid tumours. Nat. Rev. Cancer6, 583–592 (2006). ArticleCASPubMed Google Scholar
Xiao, Z., Hansen, C.B., Allen, T.M., Miller, G.G. & Moore, R.B. Distribution of photosensitizers in bladder cancer spheroids: implications for intravesical instillation of photosensitizers for photodynamic therapy of bladder cancer. J. Pharm. Pharm. Sci.8, 536–543 (2005). CASPubMed Google Scholar
L'Esperance, S., Bachvarova, M., Tetu, B., Mes-Masson, A.M. & Bachvarov, D. Global gene expression analysis of early response to chemotherapy treatment in ovarian cancer spheroids. BMC Genomics9, 99 (2008). ArticleCASPubMedPubMed Central Google Scholar
Shiras, A., Bhosale, A., Patekar, A., Shepal, V. & Shastry, P. Differential expression of CD44(S) and variant isoforms v3, v10 in three-dimensional cultures of mouse melanoma cell lines. Clin. Exp. Metastasis19, 445–455 (2002). ArticleCASPubMed Google Scholar
Zietarska, M. et al. Molecular description of a 3D in vitro model for the study of epithelial ovarian cancer (EOC). Mol. Carcinog.46, 872–885 (2007). ArticleCASPubMed Google Scholar
Berchner-Pfannschmidt, U. et al. Nuclear oxygen sensing: induction of endogenous prolyl-hydroxylase 2 activity by hypoxia and nitric oxide. J. Biol. Chem.83, 31745–31753 (2008). Article Google Scholar
Leroux, F. et al. Experimental approaches to kinetics of gas diffusion in hydrogenase. Proc. Natl. Acad. Sci. USA105, 11188–11193 (2008). ArticleCASPubMedPubMed Central Google Scholar
Nowicki, M.O. et al. Lithium inhibits invasion of glioma cells; possible involvement of glycogen synthase kinase-3. Neuro Oncol.10, 690–699 (2008). ArticleCASPubMedPubMed Central Google Scholar
Wartenberg, M., Hescheler, J. & Sauer, H. Electrical fields enhance growth of cancer spheroids by reactive oxygen species and intracellular Ca2+. Am. J. Physiol.272, R1677–R1683 (1997). CASPubMed Google Scholar
Gali-Muhtasib, H. et al. Thymoquinone triggers inactivation of the stress response pathway sensor CHEK1 and contributes to apoptosis in colorectal cancer cells. Cancer Res.68, 5609–5618 (2008). ArticleCASPubMed Google Scholar
Wartenberg, M. et al. Reactive oxygen species-linked regulation of the multidrug resistance transporter P-glycoprotein in Nox-1 overexpressing prostate tumor spheroids. FEBS Lett.579, 4541–4549 (2005). ArticleCASPubMed Google Scholar
Salmaggi, A. et al. Glioblastoma-derived tumorospheres identify a population of tumor stem-like cells with angiogenic potential and enhanced multidrug resistance phenotype. Glia54, 850–860 (2006). ArticlePubMed Google Scholar
Singh, S.K. et al. Identification of human brain tumour initiating cells. Nature432, 396–401 (2004). ArticleCASPubMed Google Scholar
Hermann, P.C. et al. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell1, 313–323 (2007). ArticleCASPubMed Google Scholar
O'Brien, C.A., Pollett, A., Gallinger, S. & Dick, J.E. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature445, 106–110 (2007). ArticleCASPubMed Google Scholar
Ricci-Vitiani, L. et al. Identification and expansion of human colon-cancer-initiating cells. Nature445, 111–115 (2007). ArticleCASPubMed Google Scholar
Mizrak, D., Brittan, M. & Alison, M.R. CD133: molecule of the moment. J. Pathol.214, 3–9 (2008). ArticleCASPubMed Google Scholar
Takaishi, S., Okumura, T. & Wang, T.C. Gastric cancer stem cells. J. Clin. Oncol.26, 2876–2882 (2008). ArticlePubMed Google Scholar
Chen, T.R., Dorotinsky, C.S., McGuire, L.J., Macy, M.L. & Hay, R.J. DLD-1 and HCT-15 cell lines derived separately from colorectal carcinomas have totally different chromosome changes but the same genetic origin. Cancer Genet. Cytogenet.81, 103–108 (1995). ArticleCASPubMed Google Scholar
Roschke, A.V. et al. Karyotypic 'state' as a potential determinant for anticancer drug discovery. Proc. Natl. Acad. Sci. USA102, 2964–2969 (2005). ArticleCASPubMedPubMed Central Google Scholar
Rae, J.M. et al. Common origins of MDA-MB-435 cells from various sources with those shown to have melanoma properties. Clin. Exp. Metastasis21, 543–552 (2004). ArticleCASPubMed Google Scholar
Garraway, L.A. et al. Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature436, 117–122 (2005). ArticleCASPubMed Google Scholar