Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7 (original) (raw)

References

  1. Stevens, R.C., Yokoyama, S. & Wilson, I.A. Global efforts in structural genomics. Science 294, 89–92 (2001).
    Article CAS Google Scholar
  2. Banci, L. et al. First steps towards effective methods in exploiting high-throughput technologies for the determination of human protein structures of high biomedical value. Acta Crystallogr. D Biol. Crystallogr. 62, 1208–1217 (2006).
    Article CAS Google Scholar
  3. Lamzin, V.S. & Perrakis, A. Current state of automated crystallographic data analysis. Nat. Struct. Biol. 7 Suppl, 978–981 (2000).
    Article CAS Google Scholar
  4. C.C.P.N. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D D50, 760–763 (1994).
  5. Brunger, A.T. Version 1.2 of the Crystallography and NMR system. Nat. Protoc. 2, 2728–2733 (2007).
    Article CAS Google Scholar
  6. Adams, P.D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D Biol. Crystallogr. 58, 1948–1954 (2002).
    Article Google Scholar
  7. Jones, T.A., Zou, J.-Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for the building of protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).
    Article Google Scholar
  8. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).
    Article Google Scholar
  9. Perrakis, A., Morris, R. & Lamzin, V.S. Automated protein model building combined with iterative structure refinement. Nat. Struct. Biol. 6, 458–463 (1999).
    Article CAS Google Scholar
  10. Morris, R.J., Perrakis, A. & Lamzin, V.S. ARP/wARP and automatic interpretation of protein electron density maps. Methods Enzymol. 374, 229–244 (2003).
    Article CAS Google Scholar
  11. Terwilliger, T. SOLVE and RESOLVE: automated structure solution, density modification and model building. J. Synchrotron Radiat. 11, 49–52 (2004).
    Article CAS Google Scholar
  12. Ioerger, T.R. & Sacchettini, J.C. TEXTAL system: artificial intelligence techniques for automated protein model building. Methods Enzymol. 374, 244–270 (2003).
    Article CAS Google Scholar
  13. Cowtan, K. The Buccaneer software for automated model building. 1. Tracing protein chains. Acta Crystallogr. D Biol. Crystallogr. 62, 1002–1011 (2006).
    Article Google Scholar
  14. DiMaio, F. et al. Creating protein models from electron-density maps using particle-filtering methods. Bioinformatics 23, 2851–2858 (2007).
    Article CAS Google Scholar
  15. Jeyaprakash, A.A. et al. Structure of a survivin–borealin–INCENP core complex reveals how chromosomal passengers travel together. Cell 131, 271 (2007).
    Article CAS Google Scholar
  16. Mapelli, M., Massimiliano, L., Santaguida, S. & Musacchio, A. The Mad2 conformational dimer: structure and implications for the spindle assembly checkpoint. Cell 131, 730 (2007).
    Article CAS Google Scholar
  17. Penengo, L. et al. Crystal structure of the ubiquitin binding domains of rabex-5 reveals two modes of interaction with ubiquitin. Cell 124, 1183 (2006).
    Article CAS Google Scholar
  18. Bono, F., Ebert, J., Lorentzen, E. & Conti, E. The crystal structure of the exon junction complex reveals how it maintains a stable grip on mRNA. Cell 126, 713 (2006).
    Article CAS Google Scholar
  19. Allingham, J.S., Sproul, L.R., Rayment, I. & Gilbert, S.P. Vik1 modulates microtubule-Kar3 interactions through a motor domain that lacks an active site. Cell 128, 1161 (2007).
    Article CAS Google Scholar
  20. Nakatsu, T. et al. Structural basis for the spectral difference in luciferase bioluminescence. Nature 440, 372 (2006).
    Article CAS Google Scholar
  21. Molina, D.M. et al. Structural basis for synthesis of inflammatory mediators by human leukotriene C4 synthase. Nature 448, 613 (2007).
    Article CAS Google Scholar
  22. Fisher, C., Beglova, N. & Blacklow, S.C. Structure of an LDLR-RAP complex reveals a general mode for ligand recognition by lipoprotein receptors. Mol. Cell 22, 277 (2006).
    Article CAS Google Scholar
  23. Moukhametzianov, R. et al. Development of the signal in sensory rhodopsin and its transfer to the cognate transducer. Nature 440, 115 (2006).
    Article CAS Google Scholar
  24. Törnroth-Horsefield, S. et al. Structural mechanism of plant aquaporin gating. Nature 439, 688 (2006).
    Article Google Scholar
  25. Ye, S., Li, Y., Chen, L. & Jiang, Y. Crystal structures of a ligand-free MthK gating ring: insights into the ligand gating mechanism of K+ channels. Cell 126, 1161 (2006).
    Article CAS Google Scholar
  26. Qian, B. et al. High-resolution structure prediction and the crystallographic phase problem. Nature 450, 259 (2007).
    Article CAS Google Scholar
  27. Brunzelle, J.S. et al. Automated crystallographic system for high-throughput protein structure determination. Acta Crystallogr. D Biol. Crystallogr. 59, 1138–1144 (2003).
    Article Google Scholar
  28. Fu, Z.Q., Rose, J. & Wang, B.C. SGXPro: a parallel workflow engine enabling optimization of program performance and automation of structure determination. Acta Crystallogr. D Biol. Crystallogr. 61, 951–959 (2005).
    Article Google Scholar
  29. Holton, J. & Alber, T. Automated protein crystal structure determination using ELVES. Proc. Natl. Acad. Sci. USA 101, 1537–1542 (2004).
    Article CAS Google Scholar
  30. Liu, Z.J. et al. Parameter-space screening: a powerful tool for high-throughput crystal structure determination. Acta Crystallogr. D Biol. Crystallogr. 61, 520–527 (2005).
    Article Google Scholar
  31. Minor, W., Cymborowski, M., Otwinowski, Z. & Chruszcz, M. HKL-3000: the integration of data reduction and structure solution—from diffraction images to an initial model in minutes. Acta Crystallogr. D Biol. Crystallogr. 62, 859–866 (2006).
    Article Google Scholar
  32. Ness, S.R., de Graaff, R.A., Abrahams, J.P. & Pannu, N.S. CRANK: new methods for automated macromolecular crystal structure solution. Structure 12, 1753–1761 (2004).
    Article CAS Google Scholar
  33. Panjikar, S., Parthasarathy, V., Lamzin, V.S., Weiss, M.S. & Tucker, P.A. Auto-rickshaw: an automated crystal structure determination platform as an efficient tool for the validation of an X-ray diffraction experiment. Acta Crystallogr. D Biol. Crystallogr. 61, 449–457 (2005).
    Article Google Scholar
  34. Vonrhein, C., Blanc, E., Roversi, P. & Bricogne, G. In Crystallographic Methods (ed. Doublié, S.) (Humana Press, Totowa, NJ, 2006).
    Google Scholar
  35. Morris, R.J., Perrakis, A. & Lamzin, V.S. ARP/wARP's model-building algorithms. I. The main chain. Acta Crystallogr. D Biol. Crystallogr. 58, 968–975 (2002).
    Article Google Scholar
  36. Morris, R.J. et al. Breaking good resolutions with ARP/wARP. J. Synchrotron. Radiat. 11, 56–59 (2004).
    Article CAS Google Scholar
  37. Colf, L.A., Juo, Z.S. & Garcia, K.C. Structure of the measles virus hemagglutinin. Nat. Struct. Mol. Biol. 14, 1227–1228 (2007).
    Article CAS Google Scholar
  38. Wuerges, J. et al. Structural basis for mammalian vitamin B12 transport by transcobalamin. Proc. Natl. Acad. Sci. USA 103, 4386–4391 (2006).
    Article CAS Google Scholar
  39. Agarwal, R.C. & Isaacs, G. Proceedings in the National Academy of Sciences 74, 2835–2839 (1977).
  40. Lamzin, V.S. & Wilson, K.S. Automated refinement for protein crystallography. Methods Enzymol. 277, 269–305 (1997).
    Article CAS Google Scholar
  41. Lovell, S.C., Word, J.M., Richardson, J.S. & Richardson, D.C. The penultimate rotamer library. Proteins 40, 389–408 (2000).
    Article CAS Google Scholar
  42. Joosten, K. et al. A knowledge-driven approach for crystallographic protein model completion. Acta Crystallogr. D Biol. Crystallogr. 64, 416–424 (2004).
    Article Google Scholar
  43. Zwart, P.H., Langer, G.G. & Lamzin, V.S. Modelling bound ligands in protein crystal structures. Acta Crystallogr. D Biol. Crystallogr. 60, 2230–2239 (2004).
    Article CAS Google Scholar
  44. Evrard, G.X., Langer, G.G., Perrakis, A. & Lamzin, V.S. Assessment of automatic ligand building in ARP/wARP. Acta Crystallogr. D Biol. Crystallogr. 63, 108–117 (2007).
    Article CAS Google Scholar
  45. Lamzin, V.S. & Wilson, K.S. Automated refinement of protein models. Acta Crystallogr. D Biol. Crystallogr. 49, 129–147 (1993).
    Article CAS Google Scholar
  46. Cowtan, K. The Clipper C++ libraries for X-ray crystallography. IUCr Comput. Commission Newslett. 2, 4–9 (2003).
    Google Scholar
  47. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).
    Article CAS Google Scholar
  48. Potterton, E., Briggs, P., Turkenburg, M. & Dodson, E. A graphical user interface to the CCP4 program suite. Acta Crystallogr. D Biol. Crystallogr. 59, 1131–1137 (2003).
    Article Google Scholar
  49. Brunger, A.T. Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature 355, 472–475 (1992).
    Article CAS Google Scholar
  50. Cohen, S.X. et al. ARP/wARP and molecular replacement: the next generation. Acta Crystallogr. D Biol. Crystallogr. 64, 49–60 (2008).
    Article CAS Google Scholar
  51. Cohen, S.X. et al. Towards complete validated models in the next generation of ARP/wARP. Acta Crystallogr. D Biol. Crystallogr. 60, 2222–2229 (2004).
    Article Google Scholar
  52. Kleywegt, G.J., Henrick, K., Dodson, E.J. & van Aalten, D.M. Pound-wise but penny-foolish: how well do micromolecules fare in macromolecular refinement? Structure 11, 1051–1059 (2003).
    Article CAS Google Scholar
  53. Schuttelkopf, A.W. & van Aalten, D.M. PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr. D Biol. Crystallogr. 60, 1355–1363 (2004).
    Article Google Scholar

Download references