Venkitaraman, A. R. Cancer susceptibility and the functions of BRCA1 and BRCA2. Cell108, 171–182 (2002). ArticleCASPubMed Google Scholar
Jasin, M. Homologous repair of DNA damage and tumorigenesis: the BRCA connection. Oncogene21, 8981–8993 (2002). CASPubMed Google Scholar
D'Andrea, A. D. & Grompe, M. The Fanconi anaemia/BRCA pathway. Nature Rev. Cancer3, 23–34 (2003). CAS Google Scholar
Antoniou, A. et al. Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case series unselected for family history: a combined analysis of 22 studies. Am. J. Hum. Genet.72, 1117–1130 (2003). CASPubMedPubMed Central Google Scholar
Ford, D. et al. Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families. The Breast Cancer Linkage Consortium. Am. J. Hum. Genet.62, 676–689 (1998). CASPubMedPubMed Central Google Scholar
Nathanson, K. N., Wooster, R. & Weber, B. L. Breast cancer genetics: what we know and what we need. Nature Med.7, 552–556 (2001). CASPubMed Google Scholar
Thompson, D. & Easton, D. Variation in cancer risks, by mutation position, in BRCA2 mutation carriers. Am. J. Hum. Genet.68, 410–419 (2001). CASPubMedPubMed Central Google Scholar
Thompson, D. & Easton, D. F. Cancer Incidence in BRCA1 mutation carriers. J. Natl Cancer Inst.94, 1358–1365 (2002). CASPubMed Google Scholar
Collins, N. et al. Consistent loss of the wild-type allele in breast cancers from a family linked to the BRCA2 gene on chromosome 13q12-13. Oncogene10, 1673–1675 (1995). CASPubMed Google Scholar
Cornelis, R. S. et al. High allele loss rates at 17q12-q21 in breast and ovarian tumors from BRCA1-linked families. The Breast Cancer Linkage Consortium. Genes Chromosom. Cancer13, 203–210 (1995). CASPubMed Google Scholar
Howlett, N. G. et al. Biallelic inactivation of BRCA2 in Fanconi anemia. Science297, 606–609 (2002). This paper reports the first evidence confirming a link betweenBRCA2mutations and the FA-D1 complementation group. CASPubMed Google Scholar
Alter, B. P. Fanconi's anemia and malignancies. Am. J. Hematol.53, 99–110 (1996). CASPubMed Google Scholar
Levitus, M. et al. Heterogeneity in Fanconi anemia: evidence for two new genetic subtypes. Blood 20 Nov 2003 (doi: 10.1182/blood-2003-08-2915).
de Winter, J. P. et al. The Fanconi anemia protein FANCF forms a nuclear complex with FANCA, FANCC and FANCG. Hum. Mol. Genet.9, 2665–2674 (2000). CASPubMed Google Scholar
Meetei, A. R. et al. A novel ubiquitin ligase is deficient in Fanconi anemia. Nature Genet.35, 165–170 (2003). A new FA gene is shown to work as a ubiquitin ligase that is necessary for modification of FANCD2. CASPubMed Google Scholar
Pace, P. et al. FANCE: the link between Fanconi anaemia complex assembly and activity. EMBO J.21, 3414–3423 (2002). CASPubMedPubMed Central Google Scholar
Taniguchi, T. & D'Andrea, A. D. The Fanconi anemia protein, FANCE, promotes the nuclear accumulation of FANCC. Blood100, 2457–2462 (2002). CASPubMed Google Scholar
Garcia-Higuera, I. et al. Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway. Mol. Cell7, 249–262 (2001). The first characterization of the FANCD2 protein shows that it links the FA-protein nuclear complex to nuclear foci occupied by the BRCA1 protein. CASPubMed Google Scholar
Chen, J. et al. Stable interaction between the products of the BRCA1 and BRCA2 tumor suppressor genes in mitotic and meiotic cells. Mol. Cell2, 317–328 (1998). CASPubMed Google Scholar
Patel, K. J. et al. Involvement of Brca2 in DNA repair. Mol. Cell1, 347–357 (1998). CASPubMed Google Scholar
Xu, X. et al. Centrosome amplification and a defective G2-M cell cycle checkpoint induce genetic instability in BRCA1 exon 11 isoform-deficient cells. Mol. Cell3, 389–395 (1999). CASPubMed Google Scholar
Sonoda, E. et al. Rad51-deficient vertebrate cells accumulate chromosomal breaks prior to cell death. EMBO J.17, 598–608 (1998). CASPubMedPubMed Central Google Scholar
Yu, V. P. et al. Gross chromosomal rearrangements and genetic exchange between non-homologous chromosomes following BRCA2 inactivation. Genes Dev.14, 1400–1406 (2000). CASPubMedPubMed Central Google Scholar
Joenje, H. & Patel, K. J. The emerging genetic and molecular basis of Fanconi anaemia. Nature Rev. Genet.2, 446–457 (2001). CASPubMed Google Scholar
West, S. C. Molecular views of recombination proteins and their control. Nature Rev. Mol. Cell Biol.4, 435–445 (2003). CAS Google Scholar
Moynahan, M. E., Chiu, J. W., Koller, B. H. & Jasin, M. Brca1 controls homology-directed DNA repair. Mol. Cell4, 511–518 (1999). CASPubMed Google Scholar
Moynahan, M. E., Pierce, A. J. & Jasin, M. BRCA2 is required for homology-directed repair of chromosomal breaks. Mol. Cell7, 263–272 (2001). References 28 and 29 show that BRCA1 and BRCA2 regulate the efficiency with which a chromosomal DSB is repaired by homology-directed mechanisms. CASPubMed Google Scholar
Kraakman-van der Zwet, M. et al. Brca2 (XRCC11) deficiency results in radioresistant DNA synthesis and a higher frequency of spontaneous deletions. Mol. Cell. Biol.22, 669–679 (2002). CASPubMedPubMed Central Google Scholar
Cressman, V. L. et al. Growth retardation, DNA repair defects, and lack of spermatogenesis in BRCA1-deficient mice. Mol. Cell. Biol.19, 7061–7075 (1999). CASPubMedPubMed Central Google Scholar
Xu, X., Aprelikova, O., Moens, P., Deng, C. X. & Furth, P. A. Impaired meiotic DNA-damage repair and lack of crossing-over during spermatogenesis in BRCA1 full-length isoform deficient mice. Development130, 2001–2012 (2003). CASPubMed Google Scholar
Sharan, S. K. et al. BRCA2 deficiency in mice leads to meiotic impairment and infertility. Development131, 131–142 (2004). CASPubMed Google Scholar
Yamamoto, K. et al. Fanconi anemia FANCG protein in mitigating radiation- and enzyme-induced DNA double-strand breaks by homologous recombination in vertebrate cells. Mol. Cell. Biol.23, 5421–5430 (2003). CASPubMedPubMed Central Google Scholar
Houghtaling, S. et al. Epithelial cancer in Fanconi anemia complementation group D2 (Fancd2) knockout mice. Genes Dev.17, 2021–2035 (2003). CASPubMedPubMed Central Google Scholar
Wong, J. C. et al. Targeted disruption of exons 1 to 6 of the fanconi anemia group A gene leads to growth retardation, strain-specific microphthalmia, meiotic defects and primordial germ cell hypoplasia. Hum. Mol. Genet.12, 2063–2076 (2003). CASPubMed Google Scholar
Wilson, J. B. et al. The Chinese hamster FANCG/XRCC9 mutant NM3 fails to express the monoubiquitinated form of the FANCD2 protein, is hypersensitive to a range of DNA damaging agents and exhibits a normal level of spontaneous sister chromatid exchange. Carcinogenesis22, 1939–1946 (2001). CASPubMed Google Scholar
Takata, M. et al. Chromosomal instability and defective recombinational repair in knock-out mutants of the five Rad51 paralogs. Mol. Cell. Biol.21, 2858–2866 (2001). CASPubMedPubMed Central Google Scholar
Wong, A. K., Pero, R., Ormonde, P. A., Tavtigian, S. V. & Bartel, P. L. RAD51 interacts with the evolutionarily conserved BRC motifs in the human breast cancer susceptibility gene brca2. J. Biol. Chem.272, 31941–31944 (1997). CASPubMed Google Scholar
Chen, P. L. et al. The BRC repeats in BRCA2 are critical for RAD51 binding and resistance to methyl methanesulfonate treatment. Proc. Natl Acad. Sci. USA95, 5287–5292 (1998). CASPubMedPubMed Central Google Scholar
Davies, A. A. et al. Role of BRCA2 in control of the RAD51 recombination and DNA repair protein. Mol. Cell7, 273–282 (2001). CASPubMed Google Scholar
Pellegrini, L. et al. Insights into DNA recombination from the structure of a RAD51–BRCA2 complex. Nature420, 287–293 (2002). Together, references 41 and 42 demonstrate the regulation of RAD51 oligomerization by the BRC repeats in BRCA2 and provide a structural basis for this phenomenon. CASPubMed Google Scholar
Yu, D. S. et al. Dynamic control of Rad51 recombinase by self-association and interaction with BRCA2. Mol. Cell12, 1029–1041 (2003). CASPubMed Google Scholar
Yang, H. et al. BRCA2 function in DNA binding and recombination from a BRCA2–DSS1–ssDNA structure. Science297, 1837–1848 (2002). The structure of a C-terminal domain of BRCA2 demonstrates novel DNA-binding properties that might underlie functions in DNA recombination. CASPubMed Google Scholar
Shin, D. S. et al. Full-length archaeal Rad51 structure and mutants: mechanisms for RAD51 assembly and control by BRCA2. EMBO J.22, 4566–4576 (2003). CASPubMedPubMed Central Google Scholar
Shiloh, Y. ATM and related protein kinases: safeguarding genome integrity. Nature Rev. Cancer3, 155–168 (2003). CAS Google Scholar
Cortez, D., Wang, Y., Qin, J. & Elledge, S. J. Requirement of ATM-dependent phosphorylation of Brca1 in the DNA damage response to double-strand breaks. Science (1999).
Gatei, M. et al. Ataxia telangiectasia mutated (ATM) kinase and ATM and Rad3 related kinase mediate phosphorylation of Brca1 at distinct and overlapping sites. In vivo assessment using phospho-specific antibodies. J. Biol. Chem.276, 17276–17280 (2001). CASPubMed Google Scholar
Tibbetts, R. S. et al. Functional interactions between BRCA1 and the checkpoint kinase ATR during genotoxic stress. Genes Dev.14, 2989–3002 (2000). CASPubMedPubMed Central Google Scholar
Yarden, R. I., Pardo-Reoyo, S., Sgagias, M., Cowan, K. H. & Brody L. C. BRCA1 regulates the G2/M checkpoint by activating Chk1 kinase upon DNA damage. Nature Genet.30, 285–289 (2002). PubMed Google Scholar
Ree, A. H., Bratland, A., Nome, R. V., Stokke, T. & Fodstad, O. Repression of mRNA for the PLK cell cycle gene after DNA damage requires BRCA1. Oncogene22, 8952–8955 (2003). CASPubMed Google Scholar
Lee, J. S., Collins, K. M., Brown, A. L., Lee, C. H. & Chung, J. H. hCds1-mediated phosphorylation of BRCA1 regulates the DNA damage response. Nature404, 201–204 (2000). CASPubMed Google Scholar
Wang, Y. et al. BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures. Genes Dev.14, 927–939 (2000). CASPubMedPubMed Central Google Scholar
Zhong, Q. et al. Association of BRCA1 with the hRad50–hMre11–p95 complex and the DNA damage response. Science285, 747–750 (1999). CASPubMed Google Scholar
Zhong, Q., Chen, C. F., Chen, P. L. & Lee, W. H. BRCA1 facilitates microhomology-mediated end joining of DNA double strand breaks. J. Biol. Chem.277, 28641–28647 (2002). CASPubMed Google Scholar
Zhong, Q., Boyer, T. G., Chen, P. L. & Lee, W. H. Deficient nonhomologous end-joining activity in cell-free extracts from _Brca1_-null fibroblasts. Cancer Res.62, 3966–3970 (2002). CASPubMed Google Scholar
Li, S. et al. Functional link of BRCA1 and ataxia telangiectasia gene product in DNA damage response. Nature406, 210–215 (2000). CASPubMed Google Scholar
Zheng, L. et al. Sequence-specific transcriptional corepressor function for BRCA1 through a novel zinc finger protein, ZBRK1. Mol. Cell6, 757–768 (2000). CASPubMed Google Scholar
Harkin, D. P. et al. Induction of GADD45 and JNK/SAPK-dependent apoptosis following inducible expression of BRCA1. Cell97, 575–586 (1999). CASPubMed Google Scholar
Kleiman, F. E. & Manley, J. L. Functional interaction of BRCA1-associated BARD1 with polyadenylation factor CstF-50. Science285, 1576–1579 (1999). CASPubMed Google Scholar
Kleiman, F. E. & Manley, J. L. The BARD1–CstF-50 interaction links mRNA 3′ end formation to DNA damage and tumor suppression. Cell104, 743–753 (2001). CASPubMed Google Scholar
Scully, R. et al. BRCA1 is a component of the RNA polymerase II holoenzyme. Proc. Natl Acad. Sci. USA94, 5605–5610 (1997). CASPubMedPubMed Central Google Scholar
Anderson, S. F., Schlegel, B. P., Nakajima, T., Wolpin, E. S. & Parvin, J. D. BRCA1 protein is linked to the RNA polymerase II holoenzyme complex via RNA helicase A. Nature Genet.19, 254–256 (1998). CASPubMed Google Scholar
Bochar, D. A. et al. BRCA1 is associated with a human SWI/SNF-related complex: linking chromatin remodeling to breast cancer. Cell102, 257–265 (2000). CASPubMed Google Scholar
Cantor, S. B. et al. BACH1, a novel helicase-like protein, interacts directly with BRCA1 and contributes to its DNA repair function. Cell105, 149–160 (2001). CASPubMed Google Scholar
Ganesan, S. et al. BRCA1 supports XIST RNA concentration on the inactive X chromosome. Cell111, 393–405 (2002). An intriguing insight into a possible function for BRCA1 in X-chromosome inactivation, which sheds light on the pathogenesis of breast and ovarian cancers that are associated with BRCA1 inactivation. CASPubMed Google Scholar
Hashizume, R. et al. The ring heterodimer brca1–bard1 is a ubiquitin ligase inactivated by a breast cancer-derived mutation. J. Biol. Chem.276, 14537–14540 (2001). CASPubMed Google Scholar
Ruffner, H., Joazeiro, C. A., Hemmati, D., Hunter, T. & Verma, I. M. Cancer-predisposing mutations within the RING domain of BRCA1: loss of ubiquitin protein ligase activity and protection from radiation hypersensitivity. Proc. Natl Acad. Sci. USA98, 5134–5139 (2001). CASPubMedPubMed Central Google Scholar
Brzovic, P. S., Rajagopal, P., Hoyt, D. W., King, M. C. & Klevit, R. E. Structure of a BRCA1–BARD1 heterodimeric RING–RING complex. Nature Struct. Biol.8, 833–837 (2001). CASPubMed Google Scholar
Folias, A. et al. BRCA1 interacts directly with the Fanconi anemia protein FANCA. Hum. Mol. Genet.11, 2591–2597 (2002). CASPubMed Google Scholar
Vandenberg, C. J. et al. BRCA1-independent ubiquitination of FANCD2. Mol. Cell12, 247–254 (2003). CASPubMed Google Scholar
Dong, Y. et al. Regulation of BRCC, a holoenzyme complex containing BRCA1 and BRCA2, by a signalosome-like subunit and its role in DNA repair. Mol. Cell12, 1087–1099 (2003). CASPubMed Google Scholar
Mallery, D. L., Vandenberg, C. J. & Hiom, K. Activation of the E3 ligase function of the BRCA1/BARD1 complex by polyubiquitin chains. EMBO J.21, 6755–6762 (2002). CASPubMedPubMed Central Google Scholar
Nishikawa, H. et al. Mass spectrometric and mutational analyses reveal Lys-6-linked polyubiquitin chains catalyzed by BRCA1–BARD1 ubiquitin ligase. J. Biol. Chem.279, 3916–3924 (2003). PubMed Google Scholar
Xia, Y., Pao, G. M., Chen, H. W., Verma, I. M. & Hunter, T. Enhancement of BRCA1 E3 ubiquitin ligase activity through direct interaction with the BARD1 protein. J. Biol. Chem.278, 5255–5263 (2003). CASPubMed Google Scholar
Foray, N. et al. A subset of ATM- and ATR-dependent phosphorylation events requires the BRCA1 protein. EMBO J.22, 2860–2871 (2003). CASPubMedPubMed Central Google Scholar
Taniguchi, T. et al. Convergence of the fanconi anemia and ataxia telangiectasia signaling pathways. Cell109, 459–472 (2002). CASPubMed Google Scholar
Nakanishi, K. et al. Interaction of FANCD2 and NBS1 in the DNA damage response. Nature Cell Biol.4, 913–920 (2002). CASPubMed Google Scholar
Pichierri, P. & Rosselli, F. The DNA crosslink-induced S-phase checkpoint depends on ATR–CHK1 and ATR–NBS1–FANCD2 pathways. EMBO J.23, 1178–1187 (2004). CASPubMedPubMed Central Google Scholar
Centurion, S. A., Kuo, H. R. & Lambert, W. C. Damage-resistant DNA synthesis in Fanconi anemia cells treated with a DNA cross-linking agent. Exp. Cell Res.260, 216–221 (2000). CASPubMed Google Scholar
Sala-Trepat, M. et al. Arrest of S-phase progression is impaired in Fanconi anemia cells. Exp. Cell Res.260, 208–215 (2000). CASPubMed Google Scholar
Akkari, Y. M., Bateman, R. L., Reifsteck, C. A., Olson, S. B. & Grompe, M. DNA replication is required to elicit cellular responses to psoralen-induced DNA interstrand cross-links. Mol. Cell. Biol.20, 8283–8289 (2000). CASPubMedPubMed Central Google Scholar
Cox, M. M. et al. The importance of repairing stalled replication forks. Nature404, 37–41 (2000). CASPubMed Google Scholar
McGlynn, P. & Lloyd, R. G. Recombinational repair and restart of damaged replication forks. Nature Rev. Mol. Cell Biol.3, 859–870 (2002). CAS Google Scholar
Broomfield, S., Hryciw, T. & Xiao, W. DNA postreplication repair and mutagenesis in Saccharomyces cerevisiae. Mutat. Res.486, 167–184 (2001). CASPubMed Google Scholar
Lehmann, A. R. Replication of damaged DNA. Cell Cycle2, 300–302 (2003). CASPubMed Google Scholar
Hochegger, H., Sonoda, E. & Takeda, S. Post-replication repair in DT40 cells: translesion polymerases versus recombinases. Bioessays26, 151–158 (2004). CASPubMed Google Scholar
Goodman, M. F. Error-prone repair DNA polymerases in prokaryotes and eukaryotes. Annu. Rev. Biochem.71, 17–50 (2002). CASPubMed Google Scholar
Hoege, C., Pfander, B., Moldovan, G. L., Pyrowolakis, G. & Jentsch, S. RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature419, 135–141 (2002). CASPubMed Google Scholar
Tutt, A. N., van Oostrom, C. T., Ross, G. M., van Steeg, H. & Ashworth, A. Disruption of Brca2 increases the spontaneous mutation rate in vivo: synergism with ionizing radiation. EMBO Rep.3, 255–260 (2002). CASPubMedPubMed Central Google Scholar
Laquerbe, A., Sala-Trepat, M., Vives, C., Escarceller, M. & Papadopoulo, D. Molecular spectra of HPRT deletion mutations in circulating T-lymphocytes in Fanconi anemia patients. Mutat. Res.431, 341–350 (1999). CASPubMed Google Scholar
Telleman, P., Overkamp, W. J. & Zdzienicka, M. Z. Spectrum of spontaneously occurring mutations in the HPRT gene of the Chinese hamster V79 cell mutant V-H4, which is homologous to Fanconi anemia group A. Mutagenesis11, 155–159 (1996). CASPubMed Google Scholar
Papadopoulo, D., Guillouf, C., Mohrenweiser, H. & Moustacchi, E. Hypomutability in Fanconi anemia cells is associated with increased deletion frequency at the HPRT locus. Proc. Natl Acad. Sci. USA87, 8383–8387 (1990). CASPubMedPubMed Central Google Scholar
Papadopoulo, D., Porfirio, B. & Moustacchi, E. Mutagenic response of Fanconi's anemia cells from a defined complementation group after treatment with photoactivated bifunctional psoralens. Cancer Res.50, 3289–3294 (1990). CASPubMed Google Scholar
Simpson, L. J. & Sale, J. E. Rev1 is essential for DNA damage tolerance and non-templated immunoglobulin gene mutation in a vertebrate cell line. EMBO J.22, 1654–1664 (2003). CASPubMedPubMed Central Google Scholar
Sonoda, E. et al. Multiple roles of Rev3, the catalytic subunit of polzeta in maintaining genome stability in vertebrates. EMBO J.22, 3188–3197 (2003). CASPubMedPubMed Central Google Scholar
Offit, K. et al. Shared genetic susceptibility to breast cancer, brain tumors, and Fanconi anemia. J. Natl Cancer Inst.95, 1548–1551 (2003). This work defines the unique clinical features of a syndrome that is associated with biallelic germline mutations inBRCA2, indicating that they cause an FA-like disease that differs in some respects from typical FA. CASPubMed Google Scholar