Nature and nurture – lessons from chemical carcinogenesis (original) (raw)
Doll, R. & Peto, R. The causes of cancer: quantitative estimates of avoidable risks of cancer in the United States today. J. Natl Cancer Inst.66, 1191–1308 (1981). A landmark paper that compiled epidemiological evidence for a predominant role of environmental factors in human cancer. ArticleCASPubMed Google Scholar
Kolonel, L. N., Altshuler, D. & Henderson, B. E. The multiethic cohort study: exploring genes, lifestyle and cancer risk. Nature Rev. Cancer4, 519–527 (2004). ArticleCAS Google Scholar
Peto, J. Cancer epidemiology in the last century and the next decade. Nature411, 390–395 (2001). ArticleCASPubMed Google Scholar
Lichtenstein, P. et al. Environmental and heritable factors in the causation of cancer. N. Engl. J. Med.343, 78–85 (2000). Combined data on 44,788 pairs of twins indicate that the environment has the prinicpal role in causing sporadic human cancer. ArticleCASPubMed Google Scholar
Czene, K., Lichtenstein, P. & Hemminki, K. Environmental and heritable causes of cancer among 9.6 million individuals in the Swedish family-cancer database. Int. J. Cancer99, 260–266 (2002). ArticleCASPubMed Google Scholar
Theophrasti Paracelsi von Hohenheim. Von der Bergsucht oder Bergkrankheiten drey Bücher (Sebaldum Mayer, Dilingen, Germany, 1567).
Rostoski, Saupe & Schmorl . Die Bergkrankheit der Erzbergleute in Schneeberg in Sachsen ('Schneeberger Lungenkrebs'). Z. Krebsforsch.23, 360–384 (1926). Article Google Scholar
Pirchan, A. & Sikl, H. Cancer of the lung in the miners of Jáchymov (Joachimstal). Report of cases observed in 1929–1930. Am. J. Cancer16, 681–722 (1932). Google Scholar
Ramazzini, B. De Morbis Artificum Diatriba (Typis Antonii Capponi, Impressoris Episcopalis Supriorum Consensu, 1700). Google Scholar
Hill, J. Cautions Against the Immoderate Use of Snuff. Founded on the Known Qualities of the Tobacco Plant; And the Effects it Must Produce when this Way Taken into the Body: And Enforced by Instances of Persons who have Perished Miserably of Diseases, Occasioned, or Rendered Incurable by its Use (R. Baldwin and J. Jackso, London, 1761). Google Scholar
Pott, P. The Chirurgical Works. Chirurgical Observations Relative to the Cataract, The Polypus of the Nose, The Cancer of the Scrotum, The Different Kinds of Ruptures, and The Mortification of the Toes and Feet Ch. III 60–68 (Hawes, W. Clarke, and R. Collins, London, 1775). Original work of Percivall Pott, who was a surgeon at St. Bartholomew's Hospital London, that contains his seminal report on scrotal cancer in chimney sweeps. This observation raised the first possibility of cancer prevention. Google Scholar
Paris, J. A. Pharmacologica; or the History of Medicinal Substances, with a View to Establish the Art of Prescribing and of Composing Extemporaneous Formulae upon Fixed and Scientific Principles 206–217 (F. & R. Lockwood, New York, 1822). Google Scholar
Volkmann, R. Ueber Theer- und Russkrebs. Berl. Klin. Wochenschr.11, 218 (1874). Google Scholar
Hutchinson, J. On some examples of arsenic-keratosis of the skin and of arsenic-cancer. Trans. Path. Soc. London39, 352–393 (1888). Google Scholar
Rehn, L. Blasengeschwülste bei Fuchsin-Arbeitern. Arch. Klin. Chir.50, 588–600 (1895). Report of three cases of urinary bladder tumours in the production of 'fuchsin' (magenta), a complex red dyestuff made from aniline and other aromatic amines. Google Scholar
Henry, S. A. Occupational cutaneous cancer attributable to certain chemicals in industry. Br. Med. Bull.4, 389–401 (1947). Compilation of about 4,000 cases of cutaneous cancer observed in certain factories of Great Britain. Provides interesting insights on the conditions and exposures at work during the first half of the twentieth century. ArticleCAS Google Scholar
Yamagiwa, K. & Ichikawa, K. Experimentelle Studie über die Pathogenese der Epithelialgeschwülste. Mitt. Med. Fak. Kaiserl. Univ. Tokio15, 295–344 (1915). Google Scholar
Cook, J. W. et al. Chemical compounds as carcinogenic agents. Am. J. Cancer29, 219–259 (1937). ArticleCAS Google Scholar
Cook, J. W., Hewett, C. L. & Hieger, I. The isolation of a cancer-producing hydrocarbon from coal tar. J. Chem. Soc. 395–405 (1933).
Berenblum, I. & Bonser, G. M. Experimental investigation of 'aniline cancer'. J. Ind. Hyg. Toxicol.19, 86–92 (1937). CAS Google Scholar
Hueper, W. C. et al. Experimental production of bladder tumors in dogs by administration of beta-naphthylamine. J. Ind. Hyg. Toxicol.20, 46–84 (1938). CAS Google Scholar
Leichtenstern, O. Ueber Harnblasenentzündung und Harnblasengeschwülste bei Arbeitern in Farbfabriken. Dtsch. Med. Wochenschr.24, 709–713 (1898). Article Google Scholar
Yoshida, T. Über die serienweise Verfolgung der Veränderungen der Leber der experimentellen Hepatomerzeugung durch _o_-Aminoazotoluol. Trans. Jap. Path. Soc.23, 636–638 (1933). Google Scholar
Kinosita, R. Researches on the carcinogenesis of the various chemical substances. (In Japanese). Gann30, 423–426 (1936). Google Scholar
Wilson, R. H., DeEds, F. & Cox, A. J. Jr. The toxicity and carcinogenic activity of 2-acetaminofluorene. Cancer Res.1, 595–608 (1941). CAS Google Scholar
U.S. Department of Health and Human Services, Public Health Service, National Toxicology Program. 10thReport on Carcinogens [online], <http://ehp.niehs.nih.gov/roc/toc10.html> (Research Triangle Park, North Carolina, USA, 2004).
Miller, E. C. & Miller, J. A. The presence and significance of bound amino azodyes in the livers of rats fed _p_-dimethylaminoazobenzene. Cancer Res.7, 468–480 (1947). First demonstration of the covalent binding of a chemical carcinogen to cellular macromolecules such as proteins. CAS Google Scholar
Miller, E. C. Studies on the formation of protein-bound derivatives of 3,4-benzpyrene in the epidermal fraction of mouse skin. Cancer Res.11, 100–108 (1951). CASPubMed Google Scholar
Miller, E. C. & Miller, J. A. In vivo combinations between carcinogens and tissue constituents and their possible role in carcinogenesis. Cancer Res.12, 547–556 (1952). CASPubMed Google Scholar
Wheeler, G. P. & Skipper, H. E. Studies with mustards. III. In vivo fixation of C14 from nitrogen mustard-C14H3 in nucleic acid fractions of animal tissues. Arch. Biochem. Biophys.72, 465–475 (1957). Early paper describing the binding of a carcinogen to DNAin vivo. ArticleCASPubMed Google Scholar
Magee, P. N. & Farber, E. Toxic liver injury and carcinogenesis. Methylation of rat-liver nucleic acids by dimethylnitrosamine in vivo. Biochem. J.83, 114–124 (1962). ArticleCASPubMedPubMed Central Google Scholar
Brookes, P. & Lawley, P. D. Evidence for the binding of polynuclear aromatic hydrocarbons to the nucleic acid of mouse skin: relation between carcinogenic power of hydrocarbons and their binding to deoxyribonucleic acid. Nature202, 781–784 (1964). Seminal paper on the correlation between DNA-binding level and carcinogenicity of six selected polycyclic aromatic hydrocarbons. ArticleCASPubMed Google Scholar
Sporn, M. B. & Dingman, C. W. 2-Acetamidofluorene and 3-methylcholanthrene: differences in binding to rat liver deoxyribonucleic acid in vivo. Nature210, 531–532 (1966). ArticleCASPubMed Google Scholar
Dingman, C. W. & Sporn, M. B. The binding of metabolites of aminoazo dyes to rat liver DNA in vivo. Cancer Res.27, 938–944 (1967). CASPubMed Google Scholar
Auerbach, C. & Robson, J. M. Chemical production of mutations. Nature157, 302 (1946). The carcinogen 'mustard gas' induced mutations inDrosophila. ArticleCASPubMed Google Scholar
Ames, B. N., Durston, W. E., Yamasaki, E. & Lee, F. D. Carcinogens are mutagens: a simple test system combining liver homogenates for activation and bacteria for detection. Proc. Natl Acad. Sci. USA70, 2281–2285 (1973). Bruce Ames established the 'Ames Assay' for testing chemical-induced genotoxicity. ArticleCASPubMedPubMed Central Google Scholar
Wiley, F. H. The metabolism of β-naphthylamine J. Biol. Chem.124, 627–630 (1938). CAS Google Scholar
Boyland, E., Levi, A. A., Mawson, E. H. & Roe, E. Metabolism of polycyclic compounds. 4. Production of a dihydroxy-1:2:5:6-dibenzanthracene from 1:2:5:6-dibenzanthracene. Biochem. J.35, 184–191 (1941). ArticleCASPubMedPubMed Central Google Scholar
Stevenson, E. S., Dobriner, K. & Rhoads, C. P. The metabolism of dimethylaminoazobenzene (Butter Yellow) in rats. Cancer Res.2, 160–167 (1942). CAS Google Scholar
Mueller, G. C. & Miller, J. A. The metabolism of 4-dimethylaminoazobenzene by rat liver homogenates. J. Biol. Chem.176, 535–544 (1948). First demonstration of microsome-catalysed biotransformation of a chemical carcinogenin vitro. CASPubMed Google Scholar
Conney, A. H., Miller, E. C. & Miller, J. A. The metabolism of methylated aminoazo dyes. V. Evidence for induction of enzyme synthesis in the rat by 3-methylcholanthrene. Cancer Res.16, 450–459 (1956). CASPubMed Google Scholar
Brodie, B. B. et al. Detoxication of drugs and other foreign compounds by liver microsomes. Science121, 603–604 (1955). ArticleCASPubMed Google Scholar
Omura, T. & Sato, R. A new cytochrome in liver microsomes. J. Biol. Chem.237, 1375–1376 (1962). CASPubMed Google Scholar
Lu, A. Y. H. & Coon, M. J. Role of hemoprotein P-450 in fatty acid ω-hydroxylation in a soluble enzyme system from liver microsomes. J. Biol. Chem.243, 1331–1332 (1968). CASPubMed Google Scholar
Guengerich, F. P. & Shimada, T. Oxidation of toxic and carcinogenic chemicals by human cytochrome P-450 enzymes. Chem. Res. Toxicol.4, 391–407 (1991). ArticleCASPubMed Google Scholar
Shimada, T., Oda, Y., Gillam, E. M. J., Guengerich, F. P. & Inoue, K. Metabolic activation of polycyclic aromatic hydrocarbons and other procarcinogens by cytochromes P450 1A1 and P450 1B1 allelic variants and other human cytochromes P450 in Salmonella typhimurium NM2009. Drug Metab. Disp.29, 1176–1182 (2001). CAS Google Scholar
Nishimura, M., Yaguti, H., Yoshitsugu, H., Naito, S. & Satoh, T. Tissue distribution of mRNA expression of human cytochrome P450 isoforms assessed by high-sensitivity real-time reverse transcription PCR. Yakugaku Zasshi123, 369–375 (2003). ArticleCASPubMed Google Scholar
Cramer, J. W., Miller, J. A. & Miller, J. C. _N_-Hydroxylation: a new metabolic reaction observed in the rat with the carcinogen 2-acetylaminofluorene. J. Biol. Chem.235, 885–888 (1960). CASPubMed Google Scholar
Miller, E. C., Miller, J. A. & Hartmann, H. A. _N_-Hydroxy-2-acetylaminofluorene: a metabolite of 2-acetylaminofluorene with increased carcinogenic activity in the rat. Cancer Res.21, 815–824 (1961). CASPubMed Google Scholar
DeBraun, J. R., Smith, J. Y. R., Miller, E. C. & Miller, J. A. Reactivity in vivo of the carcinogen _N_-hydroxy-2-acetylaminofluorene: increase by sulfate ion. Science167, 184–186 (1970). First evidence that sulphate esters ofN-hydroxyarylamines or -amides are the ultimate carcinogenic metabolites of the corresponding parent compounds formedin vivo. Article Google Scholar
Wartenberg, D, Reyner, D. & Scott, C. S. Trichloroethylene and cancer: epidemiological evidence. Environ. Health Perspect.108 (Suppl. 2), 161–176 (2000). ArticleCASPubMedPubMed Central Google Scholar
Guengerich, F. P. Activations of dihaloalkanes by thiol-dependent mechanisms. J. Biochem. Mol. Biol.36, 20–27 (2003). CASPubMed Google Scholar
Anders, M. W. & Dekant, W. Glutathione-dependent bioactivation of haloalkenes. Annu. Rev. Pharmacol. Toxicol.38, 501–537 (1998). ArticleCASPubMed Google Scholar
McGregor, D. B., Partensky, C., Wilbourn, J. & Rice, J. M. An IARC evaluation of polychlorinated dibenzo-_p_-dioxins and polychlorinated dibenzofurans as risk factors in human carcinogenesis. Environ. Health Perspect.106 (Suppl. 2), 755–760 (1998). CASPubMedPubMed Central Google Scholar
Huff, J., Lucier, G. & Tritscher, A. Carcinogenicity of TCDD: experimental, mechanistic, and epidemiologic evidence. Annu. Rev. Pharmacol. Toxicol.34, 343–372 (1994). ArticleCASPubMed Google Scholar
Piskorska-Pliszczynska, J., Keys, B., Safe, S. & Newman, M. S. The cytosolic receptor binding affinities and AHH induction potencies of 29 polynuclear aromatic hydrocarbons. Toxicol. Lett.34, 67–74 (1986). ArticleCASPubMed Google Scholar
Conney, A. H., Miller, E. C. & Miller, J. A Substrate-induced synthesis and other properties of benzpyrene hydroxylase in rat liver. J. Biol. Chem.228, 753–766 (1957). Describes BP-mediated induction of arylhydrocarbon hydroxylase in rat liver. CASPubMed Google Scholar
Poland, A., Glover, E. & Kende, A. S. Stereospecific, high affinity binding of 2,3,7,8-tetrachlorodibenzo-_p_-dioxin by hepatic cytosol. Evidence that the binding species is receptor for induction of aryl hydrocarbon hydroxylase. J. Biol. Chem.251, 4936–4946 (1976). CASPubMed Google Scholar
Gu, Y. Z., Hogenesch, J. B. & Bradfield, C. A. The PAS superfamily: sensors of environmental and developmental signals. Annu. Rev. Pharmacol. Toxicol.40, 519–561 (2000). ArticleCASPubMed Google Scholar
Nebert, D. W., Puga, A. & Vasiliou, V. Role of the Ah receptor and the dioxin-inducible [_Ah_] gene battery in toxicity, cancer, and signal transduction. Ann. NY Acad. Sci.685, 624–640 (1993). ArticleCASPubMed Google Scholar
Gonzalez, F. J. & Fernandez-Salguero, P. The arylhydrocarbon receptor. Studies using the AhR-null mice. Drug Metab. Dispos.26, 1194–1198 (1998). CASPubMed Google Scholar
Fernandez-Salguero, P. M., Hilbert, D. M., Rudikoff, S., Ward, J. M. & Gonzalez, F. J. Aryl-hydrocarbon receptor-deficient mice are resistant to 2,3,7,8-tetrachlorodibenzo-_p_-dioxin-induced toxicity. Toxicol. Appl. Pharmacol.140, 173–179 (1996). Reports that mice deficient for the AhR are fully protected against the toxic effects of TCDD in the liver, thymus, heart, kidney, pancreas, spleen, lymph nodes and uterus. ArticleCASPubMed Google Scholar
Andersson, P. et al. A constitutively active dioxin/aryl hydrocarbon receptor induces stomach tumors. Proc. Natl Acad. Sci. USA99, 9990–9995 (2002). ArticleCASPubMedPubMed Central Google Scholar
Moennikes, O. et al. A constitutively active dioxin/aryl hydrocarbon receptor promotes hepatocarcinogenesis in mice. Cancer Res.64, 4707–4710 (2004). Unequivocal proof that the AhR is crucial in mediating the tumour-promoting activities of receptor agonists such as TCDD, polycyclic aromatic hydrocarbons and polychlorinated biphenyls. ArticleCASPubMed Google Scholar
Mimura, J. & Fujii-Kuriyama, Y. Functional role of AhR in the expression of toxic effects by TCDD. Biochim. Biophys. Acta1619, 263–268 (2003). ArticleCASPubMed Google Scholar
Frueh, F. W., Hayashibara, K. C., Brown, P. O. & Whitlock, J. P. Jr. Use of cDNA microarrays to analyze dioxin-induced changes in human liver gene expression. Toxicol. Lett.122, 189–203 (2001). ArticleCASPubMed Google Scholar
Puga, A., Maier, A. & Medvedovic, M. The transcriptional signature of dioxin in human hepatoma HepG2 cells. Biochem. Pharmacol.60, 1129–1142 (2000). ArticleCASPubMed Google Scholar
Carlson, D. B. & Perdew, G. H. A dynamic role for the Ah receptor in cell signaling? Insights from a diverse group of Ah receptor interacting proteins. J. Biochem. Mol. Toxicol.16, 317–325 (2002). ArticleCASPubMed Google Scholar
Enan, E. & Matsumura, F. Identification of c-Src as the integral component of the cytosolic Ah receptor complex, transducing the signal of 2,3,7,8-tetrachlorodibenzo-_p_-dioxin (TCDD) through the protein phosphorylation pathway. Biochem. Pharmacol.52, 1599–1612 (1996). The protein kinase SRC is activated in cytosolic liver preparations through attachment to the AhR and upon binding to TCDD. ArticleCASPubMed Google Scholar
Luch, A. in The Carcinogenic Effects of Polycyclic Aromatic Hydrocarbons (ed. Luch, A.) 1–18 (Imperial College, London, in the press).
Boyland, E. & Levi, A. A. Metabolism of polycyclic compounds. I. Production of dihydroxydihydroanthracene from anthracene. Biochem. J.29, 2679–2683 (1935). ArticleCASPubMedPubMed Central Google Scholar
Boyland, E. & Sims, P. Metabolism of polycyclic compounds. 16. The metabolism of 1:2-dihydronaphthalene and 1:2-epoxy-1:2:3:4-tetrahydronaphthalene. Biochem. J.77, 175–181 (1960). ArticleCASPubMedPubMed Central Google Scholar
Sims, P., Grover, P. L., Swaisland, A., Pal, K. & Hewer, A. Metabolic activation of benzo[_a_]pyrene proceeds by a diol-epoxide. Nature252, 326–328 (1974). First experimental evidence that the vicinal 'bay-region' 7,8-dihydrodiol 9,10-epoxide is the ultimate DNA-binding metabolite of the aromatic hydrocarbon BP. ArticleCASPubMed Google Scholar
Luch, A. & Baird, W. M. in The Carcinogenic Effects of Polycyclic Aromatic Hydrocarbons (ed. Luch, A.) 19–96 (Imperial College, London, in the press).
Gonzalez, F. J. The use of gene knockout mice to unravel the mechanisms of toxicity and chemical carcinogenesis. Toxicol. Lett.120, 199–208 (2001). ArticleCASPubMed Google Scholar
Balmain, A. & Pragnell, I. B. Mouse skin carcinomas induced in vivo by chemical carcinogens have a transforming Harvey-ras oncogene. Nature303, 72–74 (1983). Genomic DNA from skin carcinomas of mice sequentially treated with a chemical initiator (7,12-dimethylbenz[a]anthracene) and a promotor (12-O-tetradecanoylphorbol-13–acetate) of carcinogenesis contained an activatedRASoncogene and morphologically transformed fibroblasts. ArticleCASPubMed Google Scholar
Shimizu, Y. et al. Benzo[_a_]pyrene carcinogenicity is lost in mice lacking the aryl hydrocarbon receptor. Proc. Natl Acad. Sci. USA97, 779–782 (2000). Demonstrates that BP-mediated tumorigenesis in subcutaneous or epidermal mouse tissue requires the presence of a functional AhR. ArticleCASPubMedPubMed Central Google Scholar
Klaunig, J. E. & Kamendulis, L. M. The role of oxidative stress in carcinogenesis. Annu. Rev. Pharmacol. Toxicol.44, 239–267 (2004). ArticleCASPubMed Google Scholar
Freudenthal, R. I., Stephens, E. & Anderson, D. P. Determining the potential of aromatic amines to induce cancer in the urinary bladder. Int. J. Toxicol.18, 353–359 (1999). ArticleCAS Google Scholar
Beland, F. A. & Kadlubar, F. F. Formation and persistance of arylamine DNA adducts in vivo. Environ. Health Perspect.62, 19–33 (1985). ArticleCASPubMedPubMed Central Google Scholar
Neumann, H. G., Ambs, S. & Bitsch, A. The role of nongenotoxic mechanisms in arylamine carcinogenesis. Environ. Health Perspect.102 (Suppl. 6), 173–176 (1994). CASPubMedPubMed Central Google Scholar
Klöhn, P. C. et al. Early resistance to cell death and to onset of the mitochondrial permeability transition during hepatocarcinogenesis with 2-acetylaminofluorene. Proc. Natl Acad. Sci. USA100, 10014–10019 (2003). ArticlePubMedCASPubMed Central Google Scholar
Van Delft, J. H. M. et al. Discrimination of genotoxic from non-genotoxic carcinogens by gene expression profiling. Carcinogenesis25, 1265–1276 (2004). ArticleCASPubMed Google Scholar
Bombail, V., Moggs, J. G. & Orphanides, G. Perturbation of epigenetic status by toxicants. Toxicol. Lett.149, 51–58 (2004). ArticleCASPubMed Google Scholar
Hartwig, A. et al. Interference by toxic metal ions with DNA repair processes and cell cycle control: molecular mechanisms. Environ. Health Perspect.110 (Suppl. 5), 797–799 (2002). ArticleCASPubMedPubMed Central Google Scholar
McMurray, C. T. & Tainer, J. A. Cancer, cadmium and genome integrity. Nature Genet.34, 239–241 (2003). ArticleCASPubMed Google Scholar
Hughes, M. F. Arsenic toxicity and potential mechanisms of action. Toxicol. Lett.133, 1–16 (2002). ArticleCASPubMed Google Scholar
Kawanishi, S., Hiraku, Y., Murata, M. & Oikawa S. Oxidative damage and repair: the role of metals in site-specific DNA damage with reference to carcinogenesis. Free Radic. Biol. Med.32, 822–832 (2002). ArticleCASPubMed Google Scholar
Beyersmann, D. & Hechtenberg, S. Cadmium, gene regulation, and cellular signalling in mammalian cells. Toxicol. Appl. Pharmacol.144, 247–261 (1997). ArticleCASPubMed Google Scholar
Qian, Y., Castranova, V. & Shi, X. New perspectives in arsenic-induced cell signal transduction. J. Inorg. Biochem.96, 271–278 (2003). ArticleCASPubMed Google Scholar
Kasprzak, K. S., Sunderman, F. W. Jr. & Salnikow, K. Nickel carcinogenesis. Mutat. Res.533, 67–97 (2003). ArticleCASPubMed Google Scholar
Lee, Y. W. et al. Carcinogenic nickel silences gene expression by chromatin condensation and DNA methylation: a new model for epigenetic carcinogens. Mol. Cell. Biol.15, 2547–2557 (1995). ArticleCASPubMedPubMed Central Google Scholar
Zhang, Q. et al. Inhibition and reversal of nickel-induced transformation by the histone deacetylase inhibitor trichostatin A. Toxicol. Appl. Pharmacol.192, 201–211 (2003). ArticleCASPubMed Google Scholar
Govindarajan, B. et al. Reactive oxygen-induced carcinogenesis causes hypermethylation of p16Ink4a and activation of MAP kinase. Mol. Med.8, 1–8 (2002). ArticleCASPubMedPubMed Central Google Scholar
Kowara, R. et al. Reduced Fhit protein expression in nickel-transformed mouse cells and in nickel-induced murine sarcomas. Mol. Cell. Biochem.255, 195–202 (2004). ArticleCASPubMed Google Scholar
Chen, H. et al. Association of c-myc oncogene overexpression and hyperproliferation with arsenite-induced malignant transformation. Toxicol. Appl. Pharmacol.175, 260–268 (2001). ArticleCASPubMed Google Scholar
Zhao, C. Q., Young, M. R., Diwan, B. A., Coogan, T. P. & Waalkes, M. P. Association of arsenic-induced malignant transformation with DNA hypomethylation and aberrant gene expression. Proc. Natl Acad. Sci. USA94, 10907–10912 (1997). ArticleCASPubMedPubMed Central Google Scholar
Glatt, H. R. in The Carcinogenic Effects of Polycyclic Aromatic Hydrocarbons. (ed. Luch, A.) 283–314 (Imperial College, London, in the press).
Ross, J. A. et al. Adenomas induced by polycyclic aromatic hydrocarbons in strain A/J mouse lung correlate with time-integrated DNA adduct levels. Cancer Res55, 1039–1044 (1995). CASPubMed Google Scholar
Poirier, M. C. Chemical-induced DNA damage and human cancer risk. Nature Rev. Cancer4, 630–637 (2004). ArticleCAS Google Scholar
Kensler, T. W., Qian, G. S., Chen, J. G. & Groopman, J. D. Translational strategies for cancer prevention in liver. Nature Rev. Cancer3, 321–329 (2003). ArticleCAS Google Scholar
Baertschi, S. W., Raney, K. D., Stone, M. P. & Harris, T. M. Preparation of the 8,9-epoxide of the mycotoxin aflatoxin B1: the ultimate carcinogenic species. J. Am. Chem. Soc.110, 7929–7931 (1988). Key experiment with chemically synthesized AFB1exo-8,9-oxide that provided an unequivocal proof that this epoxide is the DNA-binding metabolite of the mycotoxin. ArticleCAS Google Scholar
Guengerich, F. P. et al. Activation and detoxification of aflatoxin B1 . Mutat. Res.402, 121–128 (1998). ArticleCASPubMed Google Scholar
Iyer, R. S. et al. DNA adduction by the potent carcinogen aflatoxin B1: mechanistic studies. J. Am. Chem. Soc.116, 1603–1609 (1994). ArticleCAS Google Scholar
Yang, S. K., McCourt, D. W., Roller, P. P. & Gelboin, H. V. Enzymatic conversion of benzo[_a_]pyrene leading predominantly to the diol-epoxide _r_-7,_t_-8-dihydroxy-_t_-9,10-oxy-7,8,9,10-tetrahydrobenzo[_a_]pyrene through a single enantiomer of _r_-7,_t_-8-dihydroxy-7,8-dihydrobenzo[_a_]pyrene. Proc. Natl Acad. Sci. USA73, 2594–2598 (1976). ArticleCASPubMedPubMed Central Google Scholar
Koreeda, M. et al. Binding of benzo[_a_]pyrene 7,8-diol-9,10-epoxides to DNA, RNA, and protein of mouse skin occurs with high stereoselectivity. Science199, 778–780 (1978). ArticleCASPubMed Google Scholar
Cheng, S. C., Hilton, B. D., Roman, J. M. & Dipple, A. DNA adducts from carcinogenic and noncarcinogenic enantiomers of benzo[_a_]pyrene dihydrodiol epoxides. Chem. Res. Toxicol.2, 334–340 (1989). ArticleCASPubMed Google Scholar
Friedberg, E. C. How nucleotide excision repair protects against cancer. Nature Rev. Cancer1, 22–33 (2001). ArticleCAS Google Scholar
Hess, M. T., Gunz, D., Luneva, N., Geacintov, N. E. & Naegeli, H. Base pair conformation-dependent excision of benzo[_a_]pyrene diol epoxide-guanine adducts by human nucleotide excision repair enzymes. Mol. Cell. Biol.17, 7069–7076 (1997). Indicates that the efficiency of NER of bulky aromatic hydrocarbon–DNA adducts greatly depends on the stereochemistry and the conformation of the lesion induced. ArticleCASPubMedPubMed Central Google Scholar
Geacintov, N. E. et al. NMR solution structures of stereoisomeric covalent polycyclic aromatic carcinogen-DNA adducts: principles, patterns, and diversity. Chem. Res. Toxicol.10, 111–146 (1997). ArticleCASPubMed Google Scholar
Khan, Q. A. & Dipple, A. Diverse chemical carcinogens fail to induce G1 arrest in MCF-7 cells. Carcinogenesis21, 1611–1618 (2000). CASPubMed Google Scholar
Wang, A. et al. Response of human mammary epithelial cells to DNA damage induced by BPDE: involvement of novel reulatory pathways. Carcinogenesis24, 225–234 (2003). ArticlePubMed Google Scholar
Lehmann, A. R. Replication of damaged DNA in mammalian cells: new solutions to an old problem. Mutat. Res.509, 23–34 (2002). ArticleCASPubMed Google Scholar
Ross, J. A. & Nesnow, S. Polycyclic aromatic hydrocarbons: correlation between DNA adducts and ras oncogene mutations. Mutat. Res.424, 155–166 (1999). ArticleCASPubMed Google Scholar
Malumbres, M. & Barbacid, M. RAS oncogenes: the first 30 years. Nature Rev. Cancer3, 459–465 (2003). ArticleCAS Google Scholar
Feng, Z. et al. Preferential DNA damage and poor repair determine ras gene mutational hotspot in human cancer. J. Natl Cancer Inst.94, 1527–1536 (2002). Codon 12 ofKRASin bronchial epithelial cells is a DNA-binding 'hot spot' of the cigarette smoke carcinogen BP, due to both a preferential binding ofanti-BPDE at the first dG in this codon and the inefficient DNA repair that follows. ArticleCASPubMed Google Scholar
Bos, J. L. Ras oncogenes in human cancer: a review. Cancer Res.49, 4682–4689 (1989). CASPubMed Google Scholar
Hu, W., Feng, Z. & Tang, M. -S. Preferential carcinogen-DNA adduct formation at codons 12 and 14 in human K-ras gene and their possible mechanisms. Biochemistry42, 10012–10023 (2003). ArticleCASPubMed Google Scholar
Chen, J. X., Zheng, Y., West, M. & Tang, M. S. Carcinogens preferentially bind at methylated CpG in the p53 mutational hot spots. Cancer Res.58, 2070–2075 (1998). CASPubMed Google Scholar
Feng, Z., Hu, W., Rom, W. N., Beland, F. A. & Tang, M. S. _N_-hydroxy-4-aminobiphenyl-DNA binding in human p53 gene: sequence preference and the effect of C5 cytosine methylation. Biochemistry41, 6414–6421 (2002). ArticleCASPubMed Google Scholar
Denissenko, M. F., Chen, J. X., Tang, M. S. & Pfeifer, G. P. Cytosine methylation determines hot spots of DNA damage in the human p53 gene. Proc. Natl Acad. Sci. USA94, 3893–3898 (1997). ArticleCASPubMedPubMed Central Google Scholar
Feng, Z., Hu, W., Rom, W. N., Beland, F. A. & Tang, M. S. 4-Aminobiphenyl is a major etiological agent of human bladder cancer: evidence from its DNA binding spectrum in human p53 gene. Carcinogenesis23, 1721–1727 (2002). ArticleCASPubMed Google Scholar
Denissenko, M. F., Pao, A., Tang, M. S. & Pfeifer, G. P. Preferential formation of benzo[_a_]pyrene adducts at lung cancer mutational hotspots in p53. Science274, 430–432 (1996). Landmark paper in molecular epidemiology that provides an aetiological link between BP exposure and human lung cancer based on mutations at codons 157, 248 and 273 of cellularTP53. ArticleCASPubMed Google Scholar
Denissenko, M. F., Pao, A., Pfeifer, G. P. & Tang, M. S. Slow repair of bulky DNA adducts along the nontranscribed strand of the human p53 gene may explain the strand bias of transversion mutations in cancers. Oncogene16, 1241–1247 (1998). ArticleCASPubMed Google Scholar
Hecht, S. S. Tobacco carcinogens, their biomarkers and tobacco-induced cancer. Nature Rev. Cancer3, 733–744 (2003). ArticleCAS Google Scholar
International Agency for Research on Cancer. IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans, Volume 83. Tobacco Smoke and Involuntary Smoking. (IARC Press, Lyon, 2004).
Hu, W., Feng, Z. & Tang, M. S. Nickel (II) enhances benzo[_a_]pyrene diol epoxide-induced mutagenesis through inhibition of nucleotide excision repair in human cells: a possible mechanism for nickel (II)-induced carcinogenesis. Carcinogenesis25, 455–462 (2004). ArticleCASPubMed Google Scholar
Buterin, T. et al. Trapping of DNA nucleotide excision repair factors by nonrepairable carcinogen adducts. Cancer Res.62, 4229–4235 (2002). Demonstrates that the NER-catalysed excision of (+)-trans-anti-BPDE-dG fails when its deoxycytosine base pair is deleted. This is known as the 'prototypic decoy adduct'. Bulky lesions opposite deoxycytosine deletion are also normally present in cells as an intermediate after replicative bypass of AAF or BP adducts. CASPubMed Google Scholar
Lewtas, J. et al. in Methods for Genetic Risk Assessment (ed. Brusick, D. J.) 125–169 (Lewis Publishers, Boca Raton, Florida, 1994). Google Scholar
Calabrese, E. J. & Baldwin, L. A. Toxicology rethinks its central belief. Nature421, 691–692 (2003). ArticleCASPubMed Google Scholar
Farmer, P. B. & Shuker, D. E. G. What is the significance of increases in background levels of carcinogen-derived protein and DNA adducts? Some considerations for incremental risk assessment. Mutat. Res.424, 275–286 (1999). ArticleCASPubMed Google Scholar
Wiltse, J. A. & Dellarco, V. L. U. S. Environmental Protection Agency's revised guidelines for carcinogen risk assessment: evaluating a postulated mode of carcinogen action in guiding dose–response extrapolation. Mutat. Res.464, 105–115 (2000). ArticleCASPubMed Google Scholar
Henderson, L., Albertini, S. & Aardema, M. Thresholds in genotoxicity responses. Mutat. Res.464, 123–128 (2000). ArticleCASPubMed Google Scholar
Nuwaysir, E. F., Bittner, M., Trent, J., Barrett, J. C. & Afshari, C. A. Microarrays and toxicology: the advent of toxicogenomics. Mol. Carcinog.24, 153–159 (1999). Discussion of the advantages of cDNA microarray-based expression profiling as a highly sensitive marker for detection, monitoring and characterization of biohazardous compounds in the human environment ('ToxChip' technology). ArticleCASPubMed Google Scholar
Hamadeh, H. K. et al. Prediction of compound signature using high density gene expression profiling. Toxicol. Sci.67, 232–240 (2002). ArticleCASPubMed Google Scholar
Gonzalez, F. J. The role of carcinogen-metabolizing enzyme polymorphism in cancer susceptibility. Reprod. Toxicol.11, 397–412 (1997). ArticleCASPubMed Google Scholar
Tsutsui, H. Über das künstlich erzeugte Cancroid bei der Maus. Gann12, 17–21 (1918). Google Scholar
Bloch, B. & Dreifuss, W. Ueber die experimentelle Erzeugung von Carcinomen mit Lymphdrüsen- und Lungenmetastasen durch Teerbestandteile. Schweiz. Med. Wochenschr.51, 1033–1037 (1921). Google Scholar
Leitch, A. & Kennaway, E. L. Experimental production of cancer by arsenic. Br. Med. J.II, 1107–1108 (1922). Google Scholar
Friedewald, W. F. & Rous, P. The initiating and promoting elements in tumor production. An analysis of the effects of tar, benzpyrene, and methylcholanthrene on rabbit skin. J. Exp. Med.80, 101–126 (1944). ArticleCASPubMedPubMed Central Google Scholar
Berenblum, I. & Shubik, P., A new, quantitative, approach to the study of the stages of chemical carcinogenesis in the mouse's skin. Br. J. Cancer1, 383–391 (1947). ArticleCASPubMedPubMed Central Google Scholar