Oncomirs — microRNAs with a role in cancer (original) (raw)
Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell116, 281–297 (2004). An excellent review of plant and animal miRNAs that discusses how miRNAs differ from siRNAs. ArticleCASPubMed Google Scholar
Llave, C., Xie, Z., Kasschau, K. D. & Carrington, J. C. Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science297, 2053–2056 (2002). CASPubMed Google Scholar
Palatnik, J. F. et al. Control of leaf morphogenesis by microRNAs. Nature425, 257–263 (2003). CASPubMed Google Scholar
Tang, G., Reinhart, B. J., Bartel, D. P. & Zamore, P. D. A biochemical framework for RNA silencing in plants. Genes Dev.17, 49–63 (2003). CASPubMedPubMed Central Google Scholar
Yekta, S., Shih, I. H. & Bartel, D. P. MicroRNA-directed cleavage of HOXB8 mRNA. Science304, 594–596 (2004). CASPubMed Google Scholar
Carmell, M. A., Xuan, Z., Zhang, M. Q. & Hannon, G. J. The Argonaute family: tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis. Genes Dev.16, 2733–2742 (2002). CASPubMed Google Scholar
Lee, R. C., Feinbaum, R. L. & Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell75, 843–854 (1993). CASPubMed Google Scholar
Wightman, B., Ha, I. & Ruvkun, G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell75, 855–862 (1993). CASPubMed Google Scholar
Olsen, P. H. & Ambros, V. The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev. Biol.216, 671–680 (1999). CASPubMed Google Scholar
Ambros, V. Control of developmental timing in Caenorhabditis elegans. Curr. Opin. Genet. Dev.10, 428–433 (2000). CASPubMed Google Scholar
Reinhart, B. et al. The 21 nucleotide let-7 RNA regulates C. elegans developmental timing. Nature403, 901–906 (2000). CASPubMed Google Scholar
Slack, F. J. et al. The lin-41 RBCC gene acts in the C. elegans heterochronic pathway between the let-7 regulatory RNA and the lin-29 transcription factor. Mol. Cell5, 659–669 (2000). CASPubMed Google Scholar
Pasquinelli, A. E. & Ruvkun, G. Control of developmental timing by micrornas and their targets. Annu. Rev. Cell Dev. Biol.18, 495–513 (2002). CASPubMed Google Scholar
Abrahante, J. E. et al. The Caenorhabditis elegans hunchback-like gene lin-57/hbl-1 controls developmental time and is regulated by microRNAs. Dev. Cell4, 625–637 (2003). CASPubMed Google Scholar
Lin, S. Y. et al. The C elegans hunchback homolog, hbl-1, controls temporal patterning and is a probable microRNA target. Dev. Cell4, 639–650 (2003). CASPubMed Google Scholar
Brennecke, J., Hipfner, D. R., Stark, A., Russell, R. B. & Cohen, S. M. bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell113, 25–36 (2003). CASPubMed Google Scholar
Pillai, R. S. et al. Inhibition of translational initiation by let-7 microRNA in human cells. Science309, 1573–1576 (2005). CASPubMed Google Scholar
Bagga, S. et al. Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell122, 553–563 (2005). CASPubMed Google Scholar
Lim, L. P. et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature433, 769–773 (2005). CASPubMed Google Scholar
Lee, Y., Jeon, K., Lee, J. T., Kim, S. & Kim, V. N. MicroRNA maturation: stepwise processing and subcellular localization. EMBO J.21, 4663–4670 (2002). CASPubMedPubMed Central Google Scholar
Basyuk, E., Suavet, F., Doglio, A., Bordonne, R. & Bertrand, E. Human let-7 stem-loop precursors harbor features of RNase III cleavage products. Nucleic Acids Res.31, 6593–6597 (2003). CASPubMedPubMed Central Google Scholar
Lee, Y. et al. The nuclear RNase III Drosha initiates microRNA processing. Nature425, 415–419 (2003). CASPubMed Google Scholar
Zeng, Y. & Cullen, B. R. Sequence requirements for microRNA processing and function in human cells. RNA9, 112–123 (2003). CASPubMedPubMed Central Google Scholar
Gregory, R. I. et al. The Microprocessor complex mediates the genesis of microRNAs. Nature432, 235–240 (2004). CASPubMed Google Scholar
Lee, Y. S. et al. Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell117, 69–81 (2004). CASPubMed Google Scholar
Cai, X., Hagedorn, C. H. & Cullen, B. R. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA10, 1957–1966 (2004). CASPubMedPubMed Central Google Scholar
Denli, A. M., Tops, B. B., Plasterk, R. H., Ketting, R. F. & Hannon, G. J. Processing of primary microRNAs by the Microprocessor complex. Nature432, 231–235 (2004). CASPubMed Google Scholar
Lund, E., Guttinger, S., Calado, A., Dahlberg, J. E. & Kutay, U. Nuclear export of microRNA precursors. Science303, 95–98 (2004). CASPubMed Google Scholar
Yi, R., Qin, Y., Macara, I. G. & Cullen, B. R. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev.17, 3011–3016 (2003). CASPubMedPubMed Central Google Scholar
Bohnsack, M. T., Czaplinski, K. & Gorlich, D. Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA10, 185–191 (2004). CASPubMedPubMed Central Google Scholar
Grishok, A. et al. Genes and mechanisms related to RNA interference regulate expression of small temporal RNAs that control C. elegans developmental timing. Cell106, 23–34 (2001). CASPubMed Google Scholar
Hutvagner, G. et al. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science293, 834–838 (2001). CASPubMed Google Scholar
Ketting, R. F. et al. Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev.15, 2654–2659 (2001). CASPubMedPubMed Central Google Scholar
Feinbaum, R. & Ambros, V. The timing of lin-4 RNA accumulation controls the timing of postembryonic developmental events in Caenorhabditis elegans. Dev. Biol.210, 87–95 (1999). CASPubMed Google Scholar
Ambros, V. & Horvitz, H. R. Heterochronic mutants of the nematode Caenorhabditis elegans. Science226, 409–416 (1984). CASPubMed Google Scholar
Pasquinelli, A., Reinhart, B., Slack, F., Maller, B. & Ruvkun, G. Conservation across animal phylogeny of the sequence and temporal regulation of the 21 nucleotide C. elegans let-7 heterochronic regulatory RNA. Nature408, 86–89 (2000). CASPubMed Google Scholar
Lagos-Quintana, M., Rauhut, R., Lendeckel, W. & Tuschl, T. Identification of novel genes coding for small expressed RNAs. Science294, 853–858 (2001). CASPubMed Google Scholar
Lau, N. C., Lim, L. P., Weinstein, E. G. & Bartel, D. P. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science294, 858–862. (2001). CASPubMed Google Scholar
Lee, R. C. & Ambros, V. An extensive class of small RNAs in Caenorhabditis elegans. Science294, 862–864 (2001). CASPubMed Google Scholar
Lagos-Quintana, M. et al. Identification of tissue-specific microRNAs from mouse. Curr. Biol.12, 735–739 (2002). CASPubMed Google Scholar
Aravin, A. A. et al. The small RNA profile during Drosophila melanogaster development. Dev. Cell5, 337–350 (2003). CASPubMed Google Scholar
Johnston, R. J. & Hobert, O. A microRNA controlling left/right neuronal asymmetry in Caenorhabditis elegans. Nature426, 845–849 (2003). CASPubMed Google Scholar
Lagos-Quintana, M., Rauhut, R., Meyer, J., Borkhardt, A. & Tuschl, T. New microRNAs from mouse and human. RNA9, 175–179 (2003). CASPubMedPubMed Central Google Scholar
Lai, E. C., Tomancak, P., Williams, R. W. & Rubin, G. M. Computational identification of Drosophila microRNA genes. Genome Biol.4, R42 (2003). PubMedPubMed Central Google Scholar
Lim, L. P., Glasner, M. E., Yekta, S., Burge, C. B. & Bartel, D. P. Vertebrate microRNA genes. Science299, 1540 (2003). CASPubMed Google Scholar
Sempere, L. F., Sokol, N. S., Dubrovsky, E. B., Berger, E. M. & Ambros, V. Temporal regulation of microRNA expression in Drosophila melanogaster mediated by hormonal signals and Broad–Complex gene activity. Dev. Biol.259, 9–18 (2003). CASPubMed Google Scholar
Xu, P., Vernooy, S. Y., Guo, M. & Hay, B. A. The Drosophila microRNA mir-14 suppresses cell death and is required for normal fat metabolism. Curr. Biol.13, 790–795 (2003). CASPubMed Google Scholar
Chang, S., Johnston, R. J. Jr, Frokjaer-Jensen, C., Lockery, S. & Hobert, O. MicroRNAs act sequentially and asymmetrically to control chemosensory laterality in the nematode. Nature430, 785–789 (2004). CASPubMed Google Scholar
Berezikov, E. et al. Phylogenetic shadowing and computational identification of human microRNA genes. Cell120, 21–24 (2005). CASPubMed Google Scholar
Bentwich, I. et al. Identification of hundreds of conserved and nonconserved human microRNAs. Nature Genet.37, 766–770 (2005). CASPubMed Google Scholar
Rodriguez, A., Griffiths-Jones, S., Ashurst, J. L. & Bradley, A. Identification of mammalian microRNA host genes and transcription units. Genome Res.14, 1902–1910 (2004). CASPubMedPubMed Central Google Scholar
Baskerville, S. & Bartel, D. P. Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA11, 241–247 (2005). CASPubMedPubMed Central Google Scholar
Khvorova, A., Reynolds, A. & Jayasena, S. D. Functional siRNAs and miRNAs exhibit strand bias. Cell115, 209–216 (2003). CASPubMed Google Scholar
Schwarz, D. S. et al. Asymmetry in the assembly of the RNAi enzyme complex. Cell115, 199–208 (2003). CASPubMed Google Scholar
Doench, J. G. & Sharp, P. A. Specificity of microRNA target selection in translational repression. Genes Dev.18, 504–511 (2004). CASPubMedPubMed Central Google Scholar
Vella, M. C., Choi, E. Y., Lin, S. Y., Reinert, K. & Slack, F. J. The C. elegans microRNA let-7 binds to imperfect let-7 complementary sites from the lin-41 3′ UTR. Genes Dev.18, 132–137 (2004). CASPubMedPubMed Central Google Scholar
Brennecke, J., Stark, A., Russell, R. B. & Cohen, S. M. Principles of microRNA-target recognition. PLoS Biol.3, e85 (2005). PubMedPubMed Central Google Scholar
Grosshans, H., Johnson, T., Reinert, K. L., Gerstein, M. & Slack, F. J. The temporal patterning microRNA let-7 regulates several transcription factors at the larval to adult transition in C. elegans. Dev. Cell8, 321–330 (2005). CASPubMed Google Scholar
Krek, A. et al. Combinatorial microRNA target predictions. Nature Genet.37, 495–500 (2005). CASPubMed Google Scholar
Rehmsmeier, M., Steffen, P., Hochsmann, M. & Giegerich, R. Fast and effective prediction of microRNA/target duplexes. RNA10, 1507–1517 (2004). CASPubMedPubMed Central Google Scholar
Kiriakidou, M. et al. A combined computational–experimental approach predicts human microRNA targets. Genes Dev.18, 1165–1178 (2004). CASPubMedPubMed Central Google Scholar
Rajewsky, N. & Socci, N. D. Computational identification of microRNA targets. Dev. Biol.267, 529–535 (2004). CASPubMed Google Scholar
Stark, A., Brennecke, J., Russell, R. B. & Cohen, S. M. Identification of Drosophila microRNA targets. PLoS Biol.1, E60 (2003). PubMedPubMed Central Google Scholar
Lewis, B. P., Shih, I. H., Jones-Rhoades, M. W., Bartel, D. P. & Burge, C. B. Prediction of mammalian microRNA targets. Cell115, 787–798 (2003). CASPubMed Google Scholar
Vella, M. C., Reinert, K. & Slack, F. J. Architecture of a validated microRNA::target interaction. Chem. Biol.11, 1619–1623 (2004). CASPubMed Google Scholar
Hobert, O. Common logic of transcription factor and microRNA action. Trends Biochem. Sci.29, 462–468 (2004). CASPubMed Google Scholar
Karube, Y. et al. Reduced expression of Dicer associated with poor prognosis in lung cancer patients. Cancer Sci.96, 111–115 (2005). CASPubMed Google Scholar
Kanellopoulou, C. et al. Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev.19, 489–501 (2005). CASPubMedPubMed Central Google Scholar
Fukagawa, T. et al. Dicer is essential for formation of the heterochromatin structure in vertebrate cells. Nature Cell Biol.6, 784–791 (2004). CASPubMed Google Scholar
Bernstein, E. et al. Dicer is essential for mouse development. Nature Genet.35, 215–217 (2003). CASPubMed Google Scholar
Harfe, B. D., McManus, M. T., Mansfield, J. H., Hornstein, E. & Tabin, C. J. The RNaseIII enzyme Dicer is required for morphogenesis but not patterning of the vertebrate limb. Proc. Natl Acad. Sci. USA102, 10898–10903 (2005). CASPubMedPubMed Central Google Scholar
Yang, W. J. et al. Dicer is required for embryonic angiogenesis during mouse development. J. Biol. Chem.280, 9330–9335 (2005). CASPubMed Google Scholar
Nelson, P., Kiriakidou, M., Sharma, A., Maniataki, E. & Mourelatos, Z. The microRNA world: small is mighty. Trends Biochem. Sci.28, 534–540 (2003). CASPubMed Google Scholar
Qiao, D., Zeeman, A. M., Deng, W., Looijenga, L. H. & Lin, H. Molecular characterization of hiwi, a human member of the piwi gene family whose overexpression is correlated to seminomas. Oncogene21, 3988–3999 (2002). CASPubMed Google Scholar
Lee, Y. S., Kim, H. K., Chung, S., Kim, K. S. & Dutta, A. Depletion of human micro-RNA miR-125b reveals that it is critical for the proliferation of differentiated cells but not for the down-regulation of putative targets during differentiation. J. Biol. Chem.280, 16635–16641 (2005). CASPubMed Google Scholar
Takamizawa, J. et al. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res.64, 3753–3756 (2004). Describes a strong correlation between expression levels of members of thelet-7family and post-operative survival in patients with lung cancer, and therefore supports the notion thatlet-7family members function as tumour suppressors. CASPubMed Google Scholar
Johnson, S. M. et al. RAS is regulated by the let-7 microRNA family. Cell120, 635–647 (2005). Implicates a tumour-suppressor role for thelet-7family by directly regulating the expression of the Ras oncogenes. CASPubMed Google Scholar
Calin, G. A. et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc. Natl Acad. Sci. USA101, 2999–3004 (2004). Reveals that half the annotated human miRNAs are associated with cancer. CASPubMedPubMed Central Google Scholar
Iorio, M. V. et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res.65, 7065–7070 (2005). CASPubMed Google Scholar
Sonoki, T., Iwanaga, E., Mitsuya, H. & Asou, N. Insertion of microRNA-125b-1, a human homologue of lin-4, into a rearranged immunoglobulin heavy chain gene locus in a patient with precursor B-cell acute lymphoblastic leukemia. Leukemia19, 2009–2010 (2005). CASPubMed Google Scholar
Hipfner, D. R., Weigmann, K. & Cohen, S. M. The bantam gene regulates Drosophila growth. Genetics161, 1527–1537 (2002). CASPubMedPubMed Central Google Scholar
Giraldez, A. J. et al. MicroRNAs regulate brain morphogenesis in zebrafish. Science308, 833–838 (2005). CASPubMed Google Scholar
Chen, C. Z., Li, L., Lodish, H. F. & Bartel, D. P. MicroRNAs modulate hematopoietic lineage differentiation. Science303, 83–86 (2004). CASPubMed Google Scholar
Poy, M. N. et al. A pancreatic islet-specific microRNA regulates insulin secretion. Nature432, 226–230 (2004). CASPubMed Google Scholar
Esau, C. et al. MicroRNA-143 regulates adipocyte differentiation. J. Biol. Chem.279, 52361–52365 (2004). CASPubMed Google Scholar
Hornstein, E. et al. The microRNA miR-196 acts upstream of Hoxb8 and Shh in limb development. Nature438, 671–674 (2005). CASPubMed Google Scholar
Zhao, Y., Samal, E. & Srivastava, D. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature436, 214–220 (2005). CASPubMed Google Scholar
Calin, G. A. et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc. Natl Acad. Sci. USA99, 15524–15529 (2002). The first report to correlate the mis-expression of miRNAs with cancer. CASPubMedPubMed Central Google Scholar
Cimmino, A. et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc. Natl Acad. Sci. USA102, 13944–13949 (2005). Provides evidence thatmir-15aandmir-16-1negatively regulate theBCL2oncogene. CASPubMedPubMed Central Google Scholar
Calin, G. A. et al. A microRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N. Engl. J. Med.353, 1793–1801 (2005). CASPubMed Google Scholar
Liu, C. G. et al. An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues. Proc. Natl Acad. Sci. USA101, 9740–9744 (2004). CASPubMedPubMed Central Google Scholar
Michael, M. Z., O'Connor, S. M., van Holst Pellekaan, N. G., Young, G. P. & James, R. J. Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol. Cancer Res.1, 882–891 (2003). Reveals thatmir-143andmir-145RNA levels are often reduced in colorectal cancer. CASPubMed Google Scholar
Lu, J. et al. MicroRNA expression profiles classify human cancers. Nature435, 834–838 (2005). Shows that miRNA expression profiles can cluster similar tumour types together more accurately than the expression profiles of protein-coding mRNA genes. CASPubMed Google Scholar
Cheng, A. M., Byrom, M. W., Shelton, J. & Ford, L. P. Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res.33, 1290–1297 (2005). CASPubMedPubMed Central Google Scholar
Ciafre, S. A. et al. Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem. Biophys. Res. Commun.334, 1351–1358 (2005). CASPubMed Google Scholar
Chan, J. A., Krichevsky, A. M. & Kosik, K. S. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res.65, 6029–6033 (2005). Describes a novel miRNA that functions as an oncogene by modulating the apoptotic pathway. CASPubMed Google Scholar
Pelengaris, S., Khan, M. & Evan, G. I. Suppression of Myc-induced apoptosis in β cells exposes multiple oncogenic properties of Myc and triggers carcinogenic progression. Cell109, 321–334 (2002). CASPubMed Google Scholar
Clurman, B. E. & Hayward, W. S. Multiple proto-oncogene activations in avian leukosis virus-induced lymphomas: evidence for stage-specific events. Mol. Cell. Biol.9, 2657–2664 (1989). CASPubMedPubMed Central Google Scholar
Tam, W., Ben-Yehuda, D. & Hayward, W. S. bic, a novel gene activated by proviral insertions in avian leukosis virus-induced lymphomas, is likely to function through its noncoding RNA. Mol. Cell. Biol.17, 1490–1502 (1997). CASPubMedPubMed Central Google Scholar
Metzler, M., Wilda, M., Busch, K., Viehmann, S. & Borkhardt, A. High expression of precursor microRNA-155/BIC RNA in children with Burkitt lymphoma. Genes Chromosomes Cancer39, 167–169 (2004). Identifies an miRNA that resides in theBICgene, a non-coding RNA that has been found to be preferentially upregulated in Hodgkin lymphoma. CASPubMed Google Scholar
Eis, P. S. et al. Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc. Natl Acad. Sci. USA102, 3627–3632 (2005). CASPubMedPubMed Central Google Scholar
Kluiver, J. et al. BIC and miR-155 are highly expressed in Hodgkin, primary mediastinal and diffuse large B cell lymphomas. J. Pathol.207, 243–249 (2005). CASPubMed Google Scholar
van den Berg, A. et al. High expression of B-cell receptor inducible gene BIC in all subtypes of Hodgkin lymphoma. Genes Chromosomes Cancer37, 20–28 (2003). CASPubMed Google Scholar
He, L. et al. A microRNA polycistron as a potential human oncogene. Nature435, 828–833 (2005). Shows that themir-17–92cluster works together with MYC and accelerates tumour progression in a B-cell lymphoma model. CASPubMedPubMed Central Google Scholar
O'Donnell, K. A., Wentzel, E. A., Zeller, K. I., Dang, C. V. & Mendell, J. T. c-Myc-regulated microRNAs modulate E2F1 expression. Nature435, 839–843 (2005). Reveals that theMYConcogene induces the expression of themir-17–92cluster, and, in turn, themir-17–92cluster negatively regulates the MYC-target gene,E2F1, revealing a complex genetic circuit that tightly controls cellular proliferation. CASPubMed Google Scholar
Ota, A. et al. Identification and characterization of a novel gene, C13orf25, as a target for 13q31-q32 amplification in malignant lymphoma. Cancer Res.64, 3087–3095 (2004). CASPubMed Google Scholar
Calin, G. A. et al. MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc. Natl Acad. Sci. USA101, 11755–11760 (2004). CASPubMedPubMed Central Google Scholar
Tagawa, H. & Seto, M. A microRNA cluster as a target of genomic amplification in malignant lymphoma. Leukemia19, 2013–2016 (2005). CASPubMed Google Scholar
Gordon, A. T. et al. A novel and consistent amplicon at 13q31 associated with alveolar rhabdomyosarcoma. Genes Chromosomes Cancer28, 220–226 (2000). CASPubMed Google Scholar
Schmidt, H. et al. Gains of 13q are correlated with a poor prognosis in liposarcoma. Mod. Pathol.18, 638–644 (2005). CASPubMed Google Scholar
Hayashita, Y. et al. A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res.65, 9628–9632 (2005). CASPubMed Google Scholar
Trimarchi, J. M. & Lees, J. A. Sibling rivalry in the E2F family. Nature Rev. Mol. Cell Biol.3, 11–20 (2002). CAS Google Scholar
Lin, Y. W. et al. Loss of heterozygosity at chromosome 13q in hepatocellular carcinoma: identification of three independent regions. Eur. J. Cancer35, 1730–1734 (1999). CASPubMed Google Scholar
Felli, N. et al. MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. Proc. Natl Acad. Sci. USA102, 18081–18086 (2005). CASPubMedPubMed Central Google Scholar
Nelson, P. T. et al. Microarray-based, high-throughput gene expression profiling of microRNAs. Nature Methods1, 155–161 (2004). CASPubMed Google Scholar
Thomson, J. M., Parker, J., Perou, C. M. & Hammond, S. M. A custom microarray platform for analysis of microRNA gene expression. Nature Methods1, 47–53 (2004). CASPubMed Google Scholar
Krichevsky, A. M., King, K. S., Donahue, C. P., Khrapko, K. & Kosik, K. S. A microRNA array reveals extensive regulation of microRNAs during brain development. RNA9, 1274–1281 (2003). CASPubMedPubMed Central Google Scholar
Miska, E. A. et al. Microarray analysis of microRNA expression in the developing mammalian brain. Genome Biol.5, R68 (2004). PubMedPubMed Central Google Scholar
Sempere, L. F. et al. Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol.5, R13 (2004). PubMedPubMed Central Google Scholar
Smirnova, L. et al. Regulation of miRNA expression during neural cell specification. Eur. J. Neurosci.21, 1469–1477 (2005). PubMed Google Scholar
Sun, Y. et al. Development of a micro-array to detect human and mouse microRNAs and characterization of expression in human organs. Nucleic Acids Res.32, e188 (2004). PubMedPubMed Central Google Scholar
Babak, T., Zhang, W., Morris, Q., Blencowe, B. J. & Hughes, T. R. Probing microRNAs with microarrays: tissue specificity and functional inference. RNA10, 1813–1819 (2004). CASPubMedPubMed Central Google Scholar
Krutzfeldt, J. et al. Silencing of microRNAs in vivo with 'antagomirs'. Nature438, 685–689 (2005). PubMed Google Scholar
Izquierdo, M. Short interfering RNAs as a tool for cancer gene therapy. Cancer Gene Ther.12, 217–227 (2005). CASPubMed Google Scholar
Gleave, M. E. & Monia, B. P. Antisense therapy for cancer. Nature Rev. Cancer5, 468–479 (2005). CAS Google Scholar
He, H. et al. The role of microRNA genes in papillary thyroid carcinoma. Proc. Natl Acad. Sci. USA102, 19075–19080 (2005). CASPubMedPubMed Central Google Scholar