Behin, A., Hoang-Xuan, K., Carpentier, A. F. & Delattre, J. Y. Primary brain tumours in adults. Lancet361, 323–331 (2003). PubMed Google Scholar
Stupp, R. et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med.352, 987–996 (2005). CASPubMed Google Scholar
Ellison, D. Classifying the medulloblastoma: insights from morphology and molecular genetics. Neuropathol. Appl. Neurobiol.28, 257–282 (2002). CASPubMed Google Scholar
Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell100, 57–70 (2000). CASPubMed Google Scholar
Reya, T., Morrison, S. J., Clarke, M. F. & Weissman, I. L. Stem cells, cancer, and cancer stem cells. Nature414, 105–111 (2001). CASPubMed Google Scholar
Bonnet, D. & Dick, J. E. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Med.3, 730–737 (1997). Describes for the first time the identification of stem-like cells in haematopoietic malignancies. CASPubMed Google Scholar
Hope, K. J., Jin, L. & Dick, J. E. Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nature Immunol.5, 738–743 (2004). CAS Google Scholar
Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J. & Clarke, M. F. Prospective identification of tumorigenic breast cancer cells. Proc. Natl Acad. Sci. USA100, 3983–3988 (2003). CASPubMedPubMed Central Google Scholar
Altman, J. & Das, G. D. Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J. Comp. Neurol.124, 319–335 (1965). CASPubMed Google Scholar
Altman, J. Proliferation and migration of undifferentiated precursor cells in the rat during postnatal gliogenesis. Exp. Neurol.16, 263–278 (1966). CASPubMed Google Scholar
Dacey, M. L. & Wallace, R. B. Postnatal neurogenesis in the feline cerebellum: a structural-functional investigation. Acta Neurobiol. Exp. (Wars.)34, 253–263 (1974). CAS Google Scholar
Sell, S. Stem cell origin of cancer and differentiation therapy. Crit. Rev. Oncol. Hematol.51, 1–28 (2004). PubMed Google Scholar
Nottebohm, F. The road we travelled: discovery, choreography, and significance of brain replaceable neurons. Ann. N. Y. Acad. Sci.1016, 628–658 (2004). PubMed Google Scholar
Reynolds, B. A. & Weiss, S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science255, 1707–1710 (1992). Reports the initial evidence that multipotent neural stem cells that reside in the adult rodent brain can be identified and isolatedin vitrofollowing mitogen stimulation. CASPubMed Google Scholar
Gould, E., McEwen, B. S., Tanapat, P., Galea, L. A. & Fuchs, E. Neurogenesis in the dentate gyrus of the adult tree shrew is regulated by psychosocial stress and NMDA receptor activation. J. Neurosci.17, 2492–2498 (1997). CASPubMedPubMed Central Google Scholar
Gould, E., Tanapat, P., McEwen, B. S., Flugge, G. & Fuchs, E. Proliferation of granule cell precursors in the dentate gyrus of adult monkeys is diminished by stress. Proc. Natl Acad. Sci. USA95, 3168–3171 (1998). CASPubMedPubMed Central Google Scholar
Eriksson, P. S. et al. Neurogenesis in the adult human hippocampus. Nature Med.4, 1313–1317 (1998). CASPubMed Google Scholar
Lie, D. C., Song, H., Colamarino, S. A., Ming, G. L. & Gage, F. H. Neurogenesis in the adult brain: new strategies for central nervous system diseases. Annu. Rev. Pharmacol. Toxicol.44, 399–421 (2004). CASPubMed Google Scholar
Ming, G. L. & Song, H. Adult neurogenesis in the mammalian central nervous system. Annu. Rev. Neurosci.28, 223–250 (2005). CASPubMed Google Scholar
Loeffler M. and Potten, C. in Stem Cells and Cellular Pedigrees — A Conceptual Introduction. (ed. Potten, C.) Ch. 1 (Academic Press, London, 1997). Google Scholar
Passegue E. J. C., Ailles L. E. & Weissman I. L. Normal and leukemic hematopoiesis: are leukemias a stem cell disorder or a reacquisition of stem cell characteristics? Proc. Natl Acad. Sci. USA.100, 11842–11849 (2003). CASPubMedPubMed Central Google Scholar
Doetsch, F., Caille, I., Lim, D. A., Garcia-Verdugo, J. M. & Alvarez-Buylla, A. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell97, 703–716 (1999). Results in this paper show that thebona fidesubventricular-zone stem cell is the type B cell, which shows features of a differentiated astrocyte. CASPubMed Google Scholar
Morshead, C. M. et al. Neural stem cells in the adult mammalian forebrain: a relatively quiescent subpopulation of subependymal cells. Neuron13, 1071–1082 (1994). CASPubMed Google Scholar
Sanai, N. et al. Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature427, 740–744 (2004). Provides the first evidence of the existence of neural stem cells in the subventricular zone of the adult human brain, and highlights the differences from the same compartment in rodents and the implications for the origin of brain tumours. CASPubMed Google Scholar
Sanai, N., Alvarez-Buylla, A. & Berger, M. S. Neural stem cells and the origin of gliomas. N. Engl. J. Med.353, 811–822 (2005). CASPubMed Google Scholar
Quinones-Hinojosa, A. et al. Cellular composition and cytoarchitecture of the adult human subventricular zone: A niche of neural stem cells. J. Comp. Neurol.494, 415–434 (2006). PubMed Google Scholar
Seri, B., Garcia-Verdugo, J. M., McEwen, B. S. & Alvarez-Buylla, A. Astrocytes give rise to new neurons in the adult mammalian hippocampus. J. Neurosci.21, 7153–7160 (2001). CASPubMedPubMed Central Google Scholar
Seri, B., Garcia-Verdugo, J. M., Collado-Morente, L., McEwen, B. S. & Alvarez-Buylla, A. Cell types, lineage, and architecture of the germinal zone in the adult dentate gyrus. J. Comp. Neurol.478, 359–378 (2004). PubMed Google Scholar
Roy, N. S. et al. In vitro neurogenesis by progenitor cells isolated from the adult human hippocampus. Nature Med.6, 271–277 (2000). CASPubMed Google Scholar
Doetsch, F., Petreanu, L., Caille, I., Garcia-Verdugo, J. M. & Alvarez-Buylla, A. EGF converts transit-amplifying neurogenic precursors in the adult brain into multipotent stem cells. Neuron36, 1021–1034 (2002). CASPubMed Google Scholar
Gritti, A. et al. Multipotential stem cells from the adult mouse brain proliferate and self-renew in response to basic fibroblast growth factor. J. Neurosci.16, 1091–1100 (1996). CASPubMedPubMed Central Google Scholar
Gritti, A. et al. Epidermal and fibroblast growth factors behave as mitogenic regulators for a single multipotent stem cell-like population from the subventricular region of the adult mouse forebrain. J. Neurosci.19, 3287–3297 (1999). CASPubMedPubMed Central Google Scholar
Reynolds, B. A. & Rietze, R. L. Neural stem cells and neurospheres — re-evaluating the relationship. Nature Methods2, 333–336 (2005). CASPubMed Google Scholar
Reynolds, B. A. & Weiss, S. Clonal and population analyses demonstrate that an EGF-responsive mammalian embryonic CNS precursor is a stem cell. Dev. Biol.175, 1–13 (1996). CASPubMed Google Scholar
Vescovi, A. L. et al. Isolation and cloning of multipotential stem cells from the embryonic human CNS and establishment of transplantable human neural stem cell lines by epigenetic stimulation. Exp. Neurol.156, 71–83 (1999). CASPubMed Google Scholar
Galli, R. et al. Emx2 regulates the proliferation of stem cells of the adult mammalian central nervous system. Development129, 1633–1644 (2002). CASPubMed Google Scholar
Parras, C. M. et al. Mash1 specifies neurons and oligodendrocytes in the postnatal brain. EMBO J.23, 4495–4505 (2004). CASPubMedPubMed Central Google Scholar
Soria, J. M. et al. Defective postnatal neurogenesis and disorganization of the rostral migratory stream in absence of the Vax1 homeobox gene. J. Neurosci.24, 11171–11181 (2004). CASPubMedPubMed Central Google Scholar
Weiss, S. et al. Multipotent CNS stem cells are present in the adult mammalian spinal cord and ventricular neuroaxis. J. Neurosci.16, 7599–7609 (1996). CASPubMedPubMed Central Google Scholar
Gritti, A. et al. Multipotent neural stem cells reside into the rostral extension and olfactory bulb of adult rodents. J. Neurosci.22, 437–445 (2002). CASPubMedPubMed Central Google Scholar
Svendsen, C. N., Caldwell, M. A. & Ostenfeld, T. Human neural stem cells: isolation, expansion and transplantation. Brain Pathol.9, 499–513 (1999). CASPubMed Google Scholar
Uchida, N. et al. Direct isolation of human central nervous system stem cells. Proc. Natl Acad. Sci. USA97, 14720–14725 (2000). CASPubMedPubMed Central Google Scholar
Palmer, T. D., Markakis, E. A., Willhoite, A. R., Safar, F. & Gage, F. H. Fibroblast growth factor-2 activates a latent neurogenic program in neural stem cells from diverse regions of the adult CNS. J. Neurosci.19, 8487–8497 (1999). CASPubMedPubMed Central Google Scholar
Zhao, M. et al. Evidence for neurogenesis in the adult mammalian substantia nigra. Proc. Natl Acad. Sci. USA100, 7925–7930 (2003). CASPubMedPubMed Central Google Scholar
Zhang, X., Klueber, K. M., Guo, Z., Lu, C. & Roisen, F. J. Adult human olfactory neural progenitors cultured in defined medium. Exp. Neurol.186, 112–123 (2004). PubMed Google Scholar
Consiglio, A. et al. Robust in vivo gene transfer into adult mammalian neural stem cells by lentiviral vectors. Proc. Natl Acad. Sci. USA101, 14835–14840 (2004). CASPubMedPubMed Central Google Scholar
Markakis, E. A., Palmer, T. D., Randolph-Moore, L., Rakic, P. & Gage, F. H. Novel neuronal phenotypes from neural progenitor cells. J. Neurosci.24, 2886–2897 (2004). CASPubMedPubMed Central Google Scholar
Toma, J. G., McKenzie, I. A., Bagli, D. & Miller, F. D. Isolation and characterization of multipotent skin-derived precursors from human skin. Stem Cells23, 727–737 (2005). CASPubMed Google Scholar
Messina, E. et al. Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ. Res.95, 911–921 (2004). CASPubMed Google Scholar
Dontu, G. et al. In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev.17, 1253–1270 (2003). CASPubMedPubMed Central Google Scholar
Rietze, R. L. et al. Purification of a pluripotent neural stem cell from the adult mouse brain. Nature412, 736–739 (2001). CASPubMed Google Scholar
Capela, A. & Temple, S. LeX/ssea-1 is expressed by adult mouse CNS stem cells, identifying them as nonependymal. Neuron35, 865–875 (2002). PubMed Google Scholar
Kim, M. & Morshead, C. M. Distinct populations of forebrain neural stem and progenitor cells can be isolated using side-population analysis. J. Neurosci.23, 10703–10709 (2003). CASPubMedPubMed Central Google Scholar
Singh, S. K. et al. Identification of human brain tumour initiating cells. Nature432, 396–401 (2004). Shows that only CD133+ human brain tumour cells are endowed with tumour-initiating capacityin vivo. CASPubMed Google Scholar
Ignatova, T. N. et al. Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro. Glia39, 193–206 (2002). PubMed Google Scholar
Singh S. K. et al. Identification of a cancer stem cell in human brain tumors. Cancer Res.63, 5821–5828 (2003). CASPubMed Google Scholar
Hemmati, H. D. et al. Cancerous stem cells can arise from pediatric brain tumors. Proc. Natl Acad. Sci. USA100, 15178–15183 (2003). CASPubMedPubMed Central Google Scholar
Corbeil, D., Roper, K., Weigmann, A. & Huttner, W. B. AC133 hematopoietic stem cell antigen: human homologue of mouse kidney prominin or distinct member of a novel protein family? Blood91, 2625–2626 (1998). CASPubMed Google Scholar
Tamaki, S. et al. Engraftment of sorted/expanded human central nervous system stem cells from fetal brain. J. Neurosci. Res.69, 976–986 (2002). CASPubMed Google Scholar
Galli, R. et al. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res.64, 7011–7021 (2004). CASPubMed Google Scholar
Tunici, P. et al. Genetic alterations and in vivo tumorigenicity of neurospheres derived from an adult glioblastoma. Mol. Cancer3, 25 (2004). PubMedPubMed Central Google Scholar
Yuan, X. et al. Isolation of cancer stem cells from adult glioblastoma multiforme. Oncogene23, 9392–9400 (2004). CASPubMed Google Scholar
Taylor, M. D. et al. Radial glia cells are candidate stem cells of ependymoma. Cancer Cell8, 323–335 (2005). CASPubMed Google Scholar
Merkle, F. T., Tramontin, A. D., Garcia-Verdugo, J. M. & Alvarez-Buylla, A. Radial glia give rise to adult neural stem cells in the subventricular zone. Proc. Natl Acad. Sci. USA101, 17528–17532 (2004). CASPubMedPubMed Central Google Scholar
Wechsler-Reya, R. & Scott, M. P. The developmental biology of brain tumors. Annu. Rev. Neurosci.24, 385–428 (2001). CASPubMed Google Scholar
Hopewell, J. W. & Wright, E. A. The importance of implantation site in cerebral carcinogenesis in rats. Cancer Res.29, 1927–1931 (1969). CASPubMed Google Scholar
Vick, N. A., Lin, M. J. & Bigner, D. D. The role of the subependymal plate in glial tumorigenesis. Acta Neuropathol.40, 63–71 (1977). CASPubMed Google Scholar
Zhu, Y. et al. Early inactivation of p53 tumor suppressor gene cooperating with NF1 loss induces malignant astrocytoma. Cancer Cell8, 119–130 (2005). CASPubMedPubMed Central Google Scholar
Holland, E. C. et al. Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice. Nature Genet.25, 55–57 (2000). Shows that cell-specific deregulation of oncogenic pathways leads to the development of glial tumours that arise from nestin-positive progenitors but not from differentiated astrocytes. CASPubMed Google Scholar
Holland, E. C., Hively, W. P., Gallo, V. & Varmus, H. E. Modeling mutations in the G1 arrest pathway in human gliomas: overexpression of CDK4 but not loss of INK4a-ARF induces hyperploidy in cultured mouse astrocytes. Genes Dev.12, 3644–3649 (1998). CASPubMedPubMed Central Google Scholar
Dai, C. et al. PDGF autocrine stimulation dedifferentiates cultured astrocytes and induces oligodendrogliomas and oligoastrocytomas from neural progenitors and astrocytes in vivo. Genes Dev.15, 1913–1925 (2001). CASPubMedPubMed Central Google Scholar
Bachoo, R. M. et al. Epidermal growth factor receptor and Ink4a/Arf: convergent mechanisms governing terminal differentiation and transformation along the neural stem cell to astrocyte axis. Cancer Cell1, 269–277 (2002). CASPubMed Google Scholar
Berger, F., Gay, E., Pelletier, L., Tropel, P. & Wion, D. Development of gliomas: potential role of asymmetrical cell division of neural stem cells. Lancet Oncol.5, 511–514 (2004). CASPubMed Google Scholar
Seaberg, R. M. & van der Kooy, D. Adult rodent neurogenic regions: the ventricular subependyma contains neural stem cells, but the dentate gyrus contains restricted progenitors. J. Neurosci.22, 1784–1793 (2002). CASPubMedPubMed Central Google Scholar
Bull, N. D. & Bartlett, P. F. The adult mouse hippocampal progenitor is neurogenic but not a stem cell. J. Neurosci.25, 10815–10821 (2005). CASPubMedPubMed Central Google Scholar
Frank, S. A. & Nowak, M. A. Cell biology: Developmental predisposition to cancer. Nature422, 494 (2003). CASPubMed Google Scholar
Huntly, B. J. & Gilliland, D. G. Leukaemia stem cells and the evolution of cancer-stem-cell research. Nature Rev. Cancer5, 311–321 (2005). CAS Google Scholar
Mellinghoff, I. K. et al. Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N. Engl. J. Med.353, 2012–2024 (2005). CASPubMed Google Scholar
Kuhn, H. G., Winkler, J., Kempermann, G., Thal, L. J. & Gage, F. H. Epidermal growth factor and fibroblast growth factor-2 have different effects on neural progenitors in the adult rat brain. J. Neurosci.17, 5820–5829 (1997). CASPubMedPubMed Central Google Scholar
Craig, C. G. et al. In vivo growth factor expansion of endogenous subependymal neural precursor cell populations in the adult mouse brain. J. Neurosci.16, 2649–2658 (1996). CASPubMedPubMed Central Google Scholar
Potten, C. S., Booth, C. & Hargreaves, D. The small intestine as a model for evaluating adult tissue stem cell drug targets. Cell Prolif.36, 115–129 (2003). CASPubMedPubMed Central Google Scholar
Potten, C. S. & Loeffler, M. Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development110, 1001–1020 (1990). Provides a fundamental introduction to the general concept of stem cells by describing the properties of the stem-cell compartment that is localized within the intestinal crypt. CASPubMed Google Scholar
Ross, E. A., Anderson, N. & Micklem, H. S. Serial depletion and regeneration of the murine hematopoietic system. Implications for hematopoietic organization and the study of cellular aging. J. Exp. Med.155, 432–444 (1982). CASPubMedPubMed Central Google Scholar
Hock, H. et al. Gfi-1 restricts proliferation and preserves functional integrity of haematopoietic stem cells. Nature431, 1002–1007 (2004). CASPubMed Google Scholar
Cairns, J. Mutation selection and the natural history of cancer. Nature255, 197–200 (1975). CASPubMed Google Scholar
Potten, C. S., Owen, G. & Booth, D. Intestinal stem cells protect their genome by selective segregation of template DNA strands. J. Cell Sci.115, 2381–2388 (2002). CASPubMed Google Scholar
Karpowicz, P. et al. Support for the immortal strand hypothesis: neural stem cells partition DNA asymmetrically in vitro. J. Cell Biol.170, 721–732 (2005). CASPubMedPubMed Central Google Scholar
Louis, D. N., Holland, E. C. & Cairncross, J. G. Glioma classification: a molecular reappraisal. Am. J. Pathol.159, 779–786 (2001). CASPubMedPubMed Central Google Scholar
Vescovi, A. L., Reynolds, B. A., Fraser, D. D. & Weiss, S. bFGF regulates the proliferative fate of unipotent (neuronal) and bipotent (neuronal/astroglial) EGF-generated CNS progenitor cells. Neuron11, 951–966 (1993). CASPubMed Google Scholar
Joy, A. et al. Nuclear accumulation of FGF-2 is associated with proliferation of human astrocytes and glioma cells. Oncogene14, 171–183 (1997). CASPubMed Google Scholar
Auguste, P. et al. Inhibition of fibroblast growth factor/fibroblast growth factor receptor activity in glioma cells impedes tumor growth by both angiogenesis-dependent and-independent mechanisms. Cancer Res.61, 1717–1726 (2001). CASPubMed Google Scholar
Purow, B. W. et al. Expression of Notch-1 and its ligands, Delta-like-1 and Jagged-1, is critical for glioma cell survival and proliferation. Cancer Res.65, 2353–2363 (2005). CASPubMed Google Scholar
Hitoshi, S. et al. Notch pathway molecules are essential for the maintenance, but not the generation, of mammalian neural stem cells. Genes Dev.16, 846–858 (2002). CASPubMedPubMed Central Google Scholar
Shen, Q. et al. Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science304, 1338–1340 (2004). CASPubMed Google Scholar
Molofsky, A. V. et al. Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature425, 962–967 (2003). CASPubMedPubMed Central Google Scholar
Bruggeman, S. W. et al. Ink4a and Arf differentially affect cell proliferation and neural stem cell self-renewal in Bmi1-deficient mice. Genes Dev.19, 1438–1443 (2005). CASPubMedPubMed Central Google Scholar
Leung, C. et al. Bmi1 is essential for cerebellar development and is overexpressed in human medulloblastomas. Nature428, 337–341 (2004). CASPubMed Google Scholar
Palma, V. et al. Sonic hedgehog controls stem cell behavior in the postnatal and adult brain. Development132, 335–344 (2005). CASPubMed Google Scholar
Goodrich, L. V., Milenkovic, L., Higgins, K. M. & Scott, M. P. Altered neural cell fates and medulloblastoma in mouse patched mutants. Science277, 1109–1113 (1997). CASPubMed Google Scholar
Pomeroy, S. L. et al. Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature415, 436–442 (2002). CASPubMed Google Scholar
Baker, S. J. & McKinnon, P. J. Tumour-suppressor function in the nervous system. Nature Rev. Cancer4, 184–196 (2004). CAS Google Scholar
Reya, T. & Clevers, H. Wnt signalling in stem cells and cancer. Nature434, 843–850 (2005). CASPubMed Google Scholar
Groszer, M. et al. Negative regulation of neural stem/progenitor cell proliferation by the Pten tumor suppressor gene in vivo. Science294, 2186–2189 (2001). CASPubMed Google Scholar
Li, L. et al. PTEN in neural precursor cells: regulation of migration, apoptosis, and proliferation. Mol. Cell. Neurosci.20, 21–29 (2002). CASPubMed Google Scholar
Rasheed, B. K., Wiltshire, R. N., Bigner, S. H. & Bigner, D. D. Molecular pathogenesis of malignant gliomas. Curr. Opin. Oncol.11, 162–167 (1999). CASPubMed Google Scholar
Chenn, A. & Walsh, C. A. Increased neuronal production, enlarged forebrains and cytoarchitectural distortions in β-catenin overexpressing transgenic mice. Cereb. Cortex13, 599–606 (2003). PubMed Google Scholar
Lie, D. C. et al. Wnt signalling regulates adult hippocampal neurogenesis. Nature437, 1370–1375 (2005). CASPubMed Google Scholar
Marino, S. Medulloblastoma: developmental mechanisms out of control. Trends Mol. Med.11, 17–22 (2005). CASPubMed Google Scholar
Roth, W. et al. Secreted Frizzled-related proteins inhibit motility and promote growth of human malignant glioma cells. Oncogene19, 4210–4220 (2000). CASPubMed Google Scholar
Dean, M., Fojo, T. & Bates, S. Tumour stem cells and drug resistance. Nature Rev. Cancer5, 275–284 (2005). CAS Google Scholar
Shah, K. et al. Glioma therapy and real-time imaging of neural precursor cell migration and tumor regression. Ann. Neurol.57, 34–41 (2005). CASPubMed Google Scholar
Glass, R. et al. Glioblastoma-induced attraction of endogenous neural precursor cells is associated with improved survival. J. Neurosci.25, 2637–2646 (2005). CASPubMedPubMed Central Google Scholar
Benedetti, S. et al. Gene therapy of experimental brain tumors using neural progenitor cells. Nature Med.6, 447–450 (2000). Shows that implantation in established glial tumours of neural stem/progenitor cells that have been engineered to secrete IL-4 elicits a strong anti-tumour effect. CASPubMed Google Scholar
Ehtesham, M. et al. The use of interleukin 12-secreting neural stem cells for the treatment of intracranial glioma. Cancer Res.62, 5657–5663 (2002). CASPubMed Google Scholar
Kim, S. K. et al. PEX-producing human neural stem cells inhibit tumor growth in a mouse glioma model. Clin. Cancer Res.11, 5965–5970 (2005). CASPubMed Google Scholar
Aboody, K. S. et al. Neural stem cells display extensive tropism for pathology in adult brain: evidence from intracranial gliomas. Proc. Natl Acad. Sci. USA97, 12846–12851 (2000). The first demonstration that distally implanted somatic neural stem cells can migrate considerable distances and target previously established tumours, including tumour cells that have infiltrated surrounding tissue. CASPubMedPubMed Central Google Scholar
Zhang, Z. G. et al. Magnetic resonance imaging and neurosphere therapy of stroke in rat. Ann. Neurol.53, 259–263 (2003). PubMed Google Scholar
Tang, Y. et al. In vivo tracking of neural progenitor cell migration to glioblastomas. Hum. Gene Ther.14, 1247–1254 (2003). CASPubMed Google Scholar
Schmidt, N. O. et al. Brain tumor tropism of transplanted human neural stem cells is induced by vascular endothelial growth factor. Neoplasia7, 623–629 (2005). CASPubMedPubMed Central Google Scholar
Ehtesham, M. et al. Glioma tropic neural stem cells consist of astrocytic precursors and their migratory capacity is mediated by CXCR4. Neoplasia6, 287–293 (2004). CASPubMedPubMed Central Google Scholar