Recurrent gene fusions in prostate cancer (original) (raw)
American Cancer Society: Cancer Facts & Figures 2007 [online] (2007).
Lilja, H., Ulmert, D. & Vickers, A. J. Prostate-specific antigen and prostate cancer: prediction, detection and monitoring. Nature Rev. Cancer8, 268–278 (2008). ArticleCAS Google Scholar
Denmeade, S. R. & Isaacs, J. T. A history of prostate cancer treatment. Nature Rev. Cancer2, 389–396 (2002). ArticleCAS Google Scholar
Loeb, S. & Catalona, W. J. Prostate-specific antigen in clinical practice. Cancer Lett.249, 30–39 (2007). ArticleCASPubMed Google Scholar
Tomlins, S. A. et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science310, 644–648 (2005). This manuscript reported the discovery of recurrent gene fusions in a majority of prostate cancers. ArticleCASPubMed Google Scholar
Futreal, P. A. et al. A census of human cancer genes. Nature Rev. Cancer4, 177–183 (2004). ArticleCAS Google Scholar
Ren, R. Mechanisms of BCR–ABL in the pathogenesis of chronic myelogenous leukaemia. Nature Rev. Cancer5, 172–183 (2005). ArticleCAS Google Scholar
Goldman, J. M. & Melo, J. V. Chronic myeloid leukemia—advances in biology and new approaches to treatment. N. Engl. J. Med.349, 1451–1464 (2003). ArticleCASPubMed Google Scholar
Nowell, P. C. & Hungerford, D. A. Chromosome studies on normal and leukemic human leukocytes. J. Natl Cancer Inst.25, 85–109 (1960). CASPubMed Google Scholar
Nowell, P. C. & Hungerford, D. A. Chromosome studies in human leukemia. II. Chronic granulocytic leukemia. J. Natl Cancer Inst.27, 1013–1035 (1961). References 9 & 10 were the first reports of the association between a chromosomal aberration (Philadelphia chromosome) and a malignancy (CML). CASPubMed Google Scholar
Rowley, J. D. Letter: A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature243, 290–293 (1973). ArticleCASPubMed Google Scholar
Rowley, J. D. Chromosome translocations: dangerous liaisons revisited. Nature Rev. Cancer1, 245–250 (2001). ArticleCAS Google Scholar
Druker, B. J. et al. Activity of a specific inhibitor of the BCR–ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N. Engl. J. Med.344, 1038–1042 (2001). ArticleCASPubMed Google Scholar
Druker, B. J. et al. Efficacy and safety of a specific inhibitor of the BCR–ABL tyrosine kinase in chronic myeloid leukemia. N. Engl. J. Med.344, 1031–1037 (2001). References 13 and 14 established Gleevec/imatinib as a specific inhibitor of BCR–ABL1 in CML. ArticleCASPubMed Google Scholar
Mitelman, F., Mertens, F. & Johansson, B. Prevalence estimates of recurrent balanced cytogenetic aberrations and gene fusions in unselected patients with neoplastic disorders. Genes Chromosomes Cancer43, 350–366 (2005). ArticleCASPubMed Google Scholar
Kumar-Sinha, C., Tomlins, S. A. & Chinnaiyan, A. M. Evidence of recurrent gene fusions in common epithelial tumors. Trends Mol. Med. (2006).
Mitelman, F., Johansson, B., Mandahl, N. & Mertens, F. Clinical significance of cytogenetic findings in solid tumors. Cancer Genet. Cytogenet.95, 1–8 (1997). ArticleCASPubMed Google Scholar
Mitelman, F., Johansson, B. & Mertens, F. Fusion genes and rearranged genes as a linear function of chromosome aberrations in cancer. Nature Genet.36, 331–334 (2004). Based on an analysis of prevalence of gene fusions across all cancer types, the authors observed: “Our results support the unorthodox concept that cytogenetic aberrations resulting in deregulated or rearranged genes may be of greater importance as an initial step in epithelial tumorigenesis than generally believed.” ArticleCASPubMed Google Scholar
Narod, S. A. & Foulkes, W. D. BRCA1 and BRCA2: 1994 and beyond. Nature Rev. Cancer4, 665–676 (2004). ArticleCAS Google Scholar
Jeter, J. M., Kohlmann, W. & Gruber, S. B. Genetics of colorectal cancer. Oncology (Williston Park)20, 269–276; discussion 285–286, 288–289 (2006). Google Scholar
Rowley, P. T. Inherited susceptibility to colorectal cancer. Annu. Rev. Med.56, 539–554 (2005). ArticleCASPubMed Google Scholar
Lynch, T. J. et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med.350, 2129–2139 (2004). ArticleCASPubMed Google Scholar
Rhodes, D. R. et al. Oncomine 3.0: genes, pathways, and networks in a collection of 18,000 cancer gene expression profiles. Neoplasia9, 166–180 (2007). ArticleCASPubMedPubMed Central Google Scholar
Rhodes, D. R. et al. Mining for regulatory programs in the cancer transcriptome. Nature Genet.37, 579–583 (2005). ArticleCASPubMed Google Scholar
Oikawa, T. & Yamada, T. Molecular biology of the Ets family of transcription factors. Gene303, 11–34 (2003). ArticleCASPubMed Google Scholar
Sorensen, P. H. et al. A second Ewing's sarcoma translocation, t(21;22), fuses the EWS gene to another ETS-family transcription factor, ERG. Nature Genet.6, 146–151 (1994). ArticleCASPubMed Google Scholar
Adams, J. M. et al. The c-myc oncogene driven by immunoglobulin enhancers induces lymphoid malignancy in transgenic mice. Nature318, 533–538 (1985). ArticleCASPubMed Google Scholar
Taub, R. et al. Translocation of the c-myc gene into the immunoglobulin heavy chain locus in human Burkitt lymphoma and murine plasmacytoma cells. Proc. Natl Acad. Sci. USA79, 7837–7841 (1982). ArticleCASPubMedPubMed Central Google Scholar
Tsujimoto, Y., Finger, L. R., Yunis, J., Nowell, P. C. & Croce, C. M. Cloning of the chromosome breakpoint of neoplastic B cells with the t(14;18) chromosome translocation. Science226, 1097–1099 (1984). ArticleCASPubMed Google Scholar
Tomlins, S. A. et al. Distinct classes of chromosomal rearrangements create oncogenic ETS gene fusions in prostate cancer. Nature448, 595–599 (2007). This paper reported four novel classes of Ets gene fusions in prostate cancer, besidesTMPRSS2, indicating a complex texture of gene fusions in solid cancers ArticleCASPubMed Google Scholar
Tomlins, S. A. et al. TMPRSS2:ETV4 gene fusions define a third molecular subtype of prostate cancer. Cancer Res.66, 3396–3400 (2006). ArticleCASPubMed Google Scholar
Helgeson, B. E. et al. Characterization of TMPRSS2:ETV5 and SLC45A3:ETV5 gene fusions in prostate cancer. Cancer Res.68, 73–80 (2008). ArticleCASPubMed Google Scholar
Hermans, K. G. et al. Two unique novel prostate-specific and androgen-regulated fusion partners of ETV4 in prostate cancer. Cancer Res.68, 3094–3098 (2008). ArticleCASPubMed Google Scholar
MacDonald, J. W. & Ghosh, D. COPA—cancer outlier profile analysis. Bioinformatics22, 2950–2951 (2006). ArticleCASPubMed Google Scholar
Tibshirani, R. & Hastie, T. Outlier sums for differential gene expression analysis. Biostatistics8, 2–8 (2007). ArticlePubMed Google Scholar
Annunziata, C. M. et al. Frequent engagement of the classical and alternative NF-κB pathways by diverse genetic abnormalities in multiple myeloma. Cancer Cell12, 115–130 (2007). ArticleCASPubMedPubMed Central Google Scholar
Demichelis, F. et al. TMPRSS2:ERG gene fusion associated with lethal prostate cancer in a watchful waiting cohort. Oncogene26, 4596–4599 (2007). ArticleCASPubMed Google Scholar
Cerveira, N. et al. TMPRSS2_–_ERG gene fusion causing ERG overexpression precedes chromosome copy number changes in prostate carcinomas and paired HGPIN lesions. Neoplasia8, 826–832 (2006). ArticleCASPubMedPubMed Central Google Scholar
Clark, J. et al. Diversity of TMPRSS2–ERG fusion transcripts in the human prostate. Oncogene26, 2667–2673 (2007). ArticleCASPubMed Google Scholar
Perner, S. et al. TMPRSS2:ERG fusion-associated deletions provide insight into the heterogeneity of prostate cancer. Cancer Res.66, 8337–8341 (2006). ArticleCASPubMed Google Scholar
Perner, S. et al. TMPRSS2–ERG fusion prostate cancer: an early molecular event associated with invasion. Am. J. Surg. Pathol.31, 882–888 (2007). ArticlePubMed Google Scholar
Mehra, R. et al. Characterization of TMPRSS2_–_ETS gene aberrations in androgen-independent metastatic prostate cancer. Cancer Res.68, 3584–3590 (2008). ArticleCASPubMedPubMed Central Google Scholar
Hermans, K. G. et al. TMPRSS2:ERG fusion by translocation or interstitial deletion is highly relevant in androgen-dependent prostate cancer, but is bypassed in late-stage androgen receptor-negative prostate cancer. Cancer Res.66, 10658–10663 (2006). ArticleCASPubMed Google Scholar
Iljin, K. et al. TMPRSS2 fusions with oncogenic ETS factors in prostate cancer involve unbalanced genomic rearrangements and are associated with HDAC1 and epigenetic reprogramming. Cancer Res.66, 10242–10246 (2006). ArticleCASPubMed Google Scholar
Lapointe, J. et al. A variant TMPRSS2 isoform and ERG fusion product in prostate cancer with implications for molecular diagnosis. Mod. Pathol.20, 467–473 (2007). ArticleCASPubMed Google Scholar
Rajput, A. B. et al. Frequency of the TMPRSS2:ERG gene fusion is increased in moderate to poorly differentiated prostate cancers. J. Clin. Pathol.60, 1238–1243 (2007). ArticleCASPubMedPubMed Central Google Scholar
Soller, M. J. et al. Confirmation of the high frequency of the TMPRSS2/ERG fusion gene in prostate cancer. Genes Chromosomes Cancer45, 717–719 (2006). ArticleCASPubMed Google Scholar
Yoshimoto, M. et al. Three-color FISH analysis of TMPRSS2/ERG fusions in prostate cancer indicates that genomic microdeletion of chromosome 21 is associated with rearrangement. Neoplasia8, 465–469 (2006). ArticleCASPubMedPubMed Central Google Scholar
Wang, J., Cai, Y., Ren, C. & Ittmann, M. Expression of variant TMPRSS2/ERG fusion messenger RNAs is associated with aggressive prostate cancer. Cancer Res.66, 8347–8351 (2006). ArticleCASPubMed Google Scholar
Liu, W. et al. Multiple genomic alterations on 21q22 predict various TMPRSS2/ERG fusion transcripts in human prostate cancers. Genes Chromosomes Cancer46, 972–980 (2007). ArticleCASPubMed Google Scholar
Melo, J. V. The diversity of BCR–ABL fusion proteins and their relationship to leukemia phenotype. Blood88, 2375–2384 (1996). CASPubMed Google Scholar
Lynch, H. T., Smyrk, T. & Lynch, J. F. Overview of natural history, pathology, molecular genetics and management of HNPCC (Lynch Syndrome). Int. J. Cancer69, 38–43 (1996). ArticleCASPubMed Google Scholar
Halvarsson, B. et al. Phenotypic heterogeneity in hereditary non-polyposis colorectal cancer: identical germline mutations associated with variable tumour morphology and immunohistochemical expression. J. Clin. Pathol.60, 781–786 (2007). ArticleCASPubMed Google Scholar
Lakhani, S. R. et al. Multifactorial analysis of differences between sporadic breast cancers and cancers involving BRCA1 and BRCA2 mutations. J. Natl Cancer Inst.90, 1138–1145 (1998). ArticleCASPubMed Google Scholar
Mosquera, J. M. et al. Morphological features of TMPRSS2_–_ERG gene fusion prostate cancer. J. Pathol.212, 91–101 (2007). ArticlePubMed Google Scholar
Tu, J. J. et al. Gene fusions between TMPRSS2 and ETS family genes in prostate cancer: frequency and transcript variant analysis by RT-PCR and FISH on paraffin-embedded tissues. Mod. Pathol.20, 921–928 (2007). ArticleCASPubMed Google Scholar
Mehra, R. et al. Comprehensive assessment of TMPRSS2 and ETS family gene aberrations in clinically localized prostate cancer. Mod. Pathol.20, 538–544 (2007). ArticleCASPubMed Google Scholar
Nami, R. K. et al. Expression of TMPRSS2:ERG gene fusion in prostate cancer cells is an important prognostic factor for cancer progression. Cancer Biol. Ther.6, 40–45 (2007). Article Google Scholar
Nam, R. K. et al. Expression of the TMPRSS2:ERG fusion gene predicts cancer recurrence after surgery for localised prostate cancer. Br. J. Cancer97, 1690–1695 (2007). ArticleCASPubMedPubMed Central Google Scholar
Attard, G. et al. Duplication of the fusion of TMPRSS2 to ERG sequences identifies fatal human prostate cancer. Oncogene27, 253–263 (2007). This paper analysed the prognosis of prostate cancer patients with respect to theirTMPRSS2–ERGrearrangement status and concluded that duplication of the fusion is associated with very poor cause-specific survival (25% survival at 8 years) compared withERGrearrangement-negative cases (90% survival at 8 years). Google Scholar
Petrovics, G. et al. Frequent overexpression of _ETS_-related gene-1 (ERG1) in prostate cancer transcriptome. Oncogene24, 3847–3852 (2005). ArticleCASPubMed Google Scholar
Winnes, M., Lissbrant, E., Damber, J. E. & Stenman, G. Molecular genetic analyses of the TMPRSS2_–_ERG and TMPRSS2_–_ETV1 gene fusions in 50 cases of prostate cancer. Oncol. Rep.17, 1033–1036 (2007). CASPubMed Google Scholar
Arora, R. et al. Heterogeneity of Gleason grade in multifocal adenocarcinoma of the prostate. Cancer100, 2362–2366 (2004). ArticlePubMed Google Scholar
Mehra, R. et al. Heterogeneity of TMPRSS2 gene rearrangements in multifocal prostate adenocarcinoma: molecular evidence for an independent group of diseases. Cancer Res.67, 7991–7995 (2007). ArticleCASPubMed Google Scholar
Barry, M., Perner, S., Demichelis, F. & Rubin, M. A. TMPRSS2_–_ERG fusion heterogeneity in multifocal prostate cancer: clinical and biologic implications. Urology70, 630–633 (2007). ArticlePubMed Google Scholar
Clark, J. et al. Complex patterns of ETS gene alteration arise during cancer development in the human prostate. Oncogene27, 1993–2003 (2008). ArticleCASPubMed Google Scholar
Mehra, R. et al. Characterization of _TMPRSS2_–ETS gene aberrations in androgen independent metastatic prostate cancer. Cancer Res.68, 3584–3590 (2008). ArticleCASPubMedPubMed Central Google Scholar
Skoda, R. & Prchal, J. T. Lessons from familial myeloproliferative disorders. Semin. Hematol.42, 266–273 (2005). ArticleCASPubMed Google Scholar
Langeberg, W. J., Isaacs, W. B. & Stanford, J. L. Genetic etiology of hereditary prostate cancer. Front. Biosci.12, 4101–4110 (2007). ArticleCASPubMed Google Scholar
Setlur, S. R. et al. Estrogen-dependent signaling in a molecularly distinct subclass of aggressive prostate cancer. J. Natl Cancer Inst.100, 915–925 (2008). ArticleCAS Google Scholar
Bonkhoff, H., Fixemer, T., Hunsicker, I. & Remberger, K. Estrogen receptor expression in prostate cancer and premalignant prostatic lesions. Am. J. Pathol.155, 641–647 (1999). ArticleCASPubMedPubMed Central Google Scholar
Glinsky, G. V., Glinskii, A. B., Stephenson, A. J., Hoffman, R. M. & Gerald, W. L. Gene expression profiling predicts clinical outcome of prostate cancer. J. Clin. Invest.113, 913–923 (2004). ArticleCASPubMedPubMed Central Google Scholar
Tomlins, S. A. et al. Integrative molecular concept modeling of prostate cancer progression. Nature Genet.39, 41–51 (2007). ArticleCASPubMed Google Scholar
Lapointe, J. et al. Gene expression profiling identifies clinically relevant subtypes of prostate cancer. Proc. Natl Acad. Sci. USA101, 811–816 (2004). ArticleCASPubMedPubMed Central Google Scholar
Kim, J. H. et al. Integrative analysis of genomic aberrations associated with prostate cancer progression. Cancer Res.67, 8229–8239 (2007). ArticleCASPubMed Google Scholar
Lapointe, J. et al. Genomic profiling reveals alternative genetic pathways of prostate tumorigenesis. Cancer Res.67, 8504–8510 (2007). ArticleCASPubMed Google Scholar
Lin, B. et al. Prostate-localized and androgen-regulated expression of the membrane-bound serine protease TMPRSS2. Cancer Res.59, 4180–4184 (1999). CASPubMed Google Scholar
Afar, D. E. et al. Catalytic cleavage of the androgen-regulated TMPRSS2 protease results in its secretion by prostate and prostate cancer epithelia. Cancer Res.61, 1686–1692 (2001). CASPubMed Google Scholar
Vaarala, M. H., Porvari, K., Kyllonen, A., Lukkarinen, O. & Vihko, P. The TMPRSS2 gene encoding transmembrane serine protease is overexpressed in a majority of prostate cancer patients: detection of mutated TMPRSS2 form in a case of aggressive disease. Int. J. Cancer94, 705–710 (2001). ArticleCASPubMed Google Scholar
Mertz, K. D. et al. Molecular characterization of _TMPRSS2_–ERG gene fusion in the NCI-H660 prostate cancer cell line: a new perspective for an old model. Neoplasia9, 200–206 (2007). ArticleCASPubMedPubMed Central Google Scholar
Cai, C. et al. ETV1 is a novel androgen receptor-regulated gene that mediates prostate cancer cell invasion. Mol. Endocrinol.21, 1835–1846 (2007). ArticleCASPubMed Google Scholar
Ellwood-Yen, K. et al. Myc-driven murine prostate cancer shares molecular features with human prostate tumors. Cancer Cell4, 223–238 (2003). ArticleCASPubMed Google Scholar
Klezovitch, O. et al. A causal role for ERG in neoplastic transformation of prostate epithelium. Proc. Natl Acad. Sci. USA105, 2105–2110 (2008). ArticlePubMedPubMed Central Google Scholar
Klezovitch, O. et al. A causal role for ERG in neoplastic transformation of prostate epithelium. Proc. Natl Acad. Sci USA105, 2105–2110 (2008). ArticlePubMedPubMed Central Google Scholar
Crawford, E. D. PSA testing: what is the use? Lancet365, 1447–1449
Stamey, T. A. et al. The prostate specific antigen era in the United States is over for prostate cancer: what happened in the last 20 years? J. Urol.172, 1297–1301 (2004). ArticlePubMed Google Scholar
Frankel, S., Smith, G. D., Donovan, J. & Neal, D. Screening for prostate cancer. Lancet361, 1122–1128 (2003). ArticlePubMed Google Scholar
Mao, X. et al. Detection of TMPRSS2:ERG fusion gene in circulating prostate cancer cells. Asian J. Androl.10, 467–473 (2008). ArticleCASPubMed Google Scholar
Laxman, B. et al. Noninvasive detection of TMPRSS2:ERG fusion transcripts in the urine of men with prostate cancer. Neoplasia8, 885–888 (2006). ArticleCASPubMedPubMed Central Google Scholar
Laxman, B. et al. A first generation multiplex biomarker analysis of urine for the early detection of prostate cancer. Cancer Res.68, 645–649 (2007). Article Google Scholar
Hessels, D. et al. Detection of TMPRSS2–ERG fusion transcripts and prostate cancer antigen 3 in urinary sediments may improve diagnosis of prostate cancer. Clin. Cancer Res.13, 5103–5108 (2007). ArticlePubMed Google Scholar
Huggins, C. & Hodges, C. V. Studies on prostatic cancer: I. The effect of castration, of estrogen and of androgen injection on serum phosphatases in metastatic carcinoma of the prostate. Cancer Res.1, 5 (1941). Google Scholar
Huggins, C., Stevens, R. E. & Hodges, C. V. Studies on prostatic cancer: 2. The effects of castration on advanced carcinoma of the prostate gland. Arch. Surg.43 209–222 (1941). References 98 and 99 mark the pioneering work of C. Huggins and C. V. Hodges that introduced androgen ablation therapy as a treatment modality for prostate cancer. ArticleCAS Google Scholar
Schally, A. V., Kastin, A. J. & Arimura, A. Hypothalamic FSH and LH-regulating hormone. Structure, physiology and clinical studies. Fertil. Steril.22, 703–721 (1971). ArticleCASPubMed Google Scholar
Denmeade, S. R. & Isaacs, J. T. in Cancer Medicine 5th edn (eds Bast, R. C. et al.) 765–776 (B. C. Decker, Hamilton, Ontario, 2000). Google Scholar
Steinberg, G. D. & Isaacs, J. T. in Cancer Chemotherapy (eds Hickman, J. A. & Hitton, T. R.) 322–341 (Blackwell Scientific Publications, Oxford, 1993). Google Scholar
Varenhorst, E., Wallentin, L. & Carlstrom, K. The effects of orchidectomy, estrogens, and cyproterone acetate on plasma testosterone, LH, and FSH concentrations in patients with carcinoma of the prostate. Scand. J. Urol. Nephrol.16, 31–36 (1982). ArticleCASPubMed Google Scholar
Liao, S., Howell, D. K. & Chang, T. M. Action of a nonsteroidal antiandrogen, flutamide, on the receptor binding and nuclear retention of 5 α-dihydrotestosterone in rat ventral prostate. Endocrinology94, 1205–1209 (1974). ArticleCASPubMed Google Scholar
Maximum androgen blockage in advanced prostate cancer: an overview of 22 randomised trials with 3283 deaths in 5710 patients. Lancet346, 265–269 (1995).
Laufer, M., Denmeade, S. R., Sinibaldi, V., Carducci, M. & Eisenberger, M. A. Complete androgen blockade for prostate cancer: What went wrong? J. Urol.164, 3–9 (2000). ArticleCASPubMed Google Scholar
Soda, M. et al. Identification of the transforming EML4_–_ALK fusion gene in non-small-cell lung cancer. Nature448, 561–566 (2007). The first report of a recurrent gene fusion in lung cancer. ArticleCASPubMed Google Scholar
Rikova, K. et al. Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell131, 14 (2007). ArticleCAS Google Scholar
Ruan, Y. et al. Fusion transcripts and transcribed retrotransposed loci discovered through comprehensive transcriptome analysis using Paired-End diTags (PETs). Genome Res.17, 828–838 (2007). ArticleCASPubMedPubMed Central Google Scholar
Gleissner, B. et al. Leading prognostic relevance of the BCR–ABL translocation in adult acute B-lineage lymphoblastic leukemia: a prospective study of the German Multicenter Trial Group and confirmed polymerase chain reaction analysis. Blood99, 1536–1543 (2002). ArticleCASPubMed Google Scholar
Ribeiro, R. C. et al. Clinical and biologic hallmarks of the Philadelphia chromosome in childhood acute lymphoblastic leukemia. Blood70, 948–953 (1987). CASPubMed Google Scholar
Nowell, P. C. & Hungerford, D. A. A minute chromosome in human chronic granulocytic leukemia. Science132, 1497–1501 (1960). Google Scholar
Hughes, T. et al. Monitoring CML patients responding to treatment with tyrosine kinase inhibitors: review and recommendations for harmonizing current methodology for detecting BCR-ABL transcripts and kinase domain mutations and for expressing results. Blood108, 28–37 (2006). ArticleCASPubMedPubMed Central Google Scholar
Lugo, T. G., Pendergast, A. M., Muller, A. J. & Witte, O. N. Tyrosine kinase activity and transformation potency of bcr-abl oncogene products. Science247, 1079–1082 (1990). ArticleCASPubMed Google Scholar
Daley, G. Q., Van Etten, R. A. & Baltimore, D. Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science247, 824–830 (1990). ArticleCASPubMed Google Scholar
Elefanty, A. G., Hariharan, I. K. & Cory, S. bcr-abl, the hallmark of chronic myeloid leukaemia in man, induces multiple haemopoietic neoplasms in mice. EMBO J.9, 1069–1078 (1990). ArticleCASPubMedPubMed Central Google Scholar
Kelliher, M. A., McLaughlin, J., Witte, O. N. & Rosenberg, N. Induction of a chronic myelogenous leukemia-like syndrome in mice with v-abl and BCR/ABL. Proc. Natl Acad. Sci. USA87, 6649–6653 (1990). ArticleCASPubMedPubMed Central Google Scholar
Koschmieder, S. et al. Inducible chronic phase of myeloid leukemia with expansion of hematopoietic stem cells in a transgenic model of BCR–ABL leukemogenesis. Blood105, 324–334 (2005). ArticleCASPubMed Google Scholar
Druker, B. J. et al. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N. Engl. J. Med.355, 2408–2417 (2006). ArticleCASPubMed Google Scholar
Hughes, T. P. et al. Frequency of major molecular responses to imatinib or interferon alfa plus cytarabine in newly diagnosed chronic myeloid leukemia. N. Engl. J. Med.349, 1423–1432 (2003). ArticleCASPubMed Google Scholar
O'Brien, S. G. et al. Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N. Engl. J. Med.348, 994–1004 (2003). ArticleCASPubMed Google Scholar
Jhavar, S. et al. Detection of TMPRSS2_–_ERG translocations in human prostate cancer by expression profiling using GeneChip Human Exon 1.0 ST arrays. J. Mol. Diagn.10, 50–57 (2008). ArticleCASPubMedPubMed Central Google Scholar