VEGF-A splicing: the key to anti-angiogenic therapeutics? (original) (raw)
Mendel, D. B. et al. In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: determination of a pharmacokinetic/pharmacodynamic relationship. Clin. Cancer Res.9, 327–337 (2003). CASPubMed Google Scholar
Motzer, R. J. et al. Sunitinib versus interferon α in metastatic renal-cell carcinoma. N. Engl. J. Med.356, 115–124 (2007). ArticleCASPubMed Google Scholar
Hurwitz, H. et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N. Engl. J. Med.350, 2335–2342 (2004). CASPubMed Google Scholar
Ferrara, N. Role of vascular endothelial growth factor in physiologic and pathologic angiogenesis: therapeutic implications. Semin. Oncol.29, 10–14 (2002). ArticleCASPubMed Google Scholar
Ferrara, N. & Henzel, W. J. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem. Biophys. Res. Comm.161, 851–858 (1989). ArticleCASPubMed Google Scholar
Senger, D. R. et al. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science219, 983–985 (1983). ArticleCASPubMed Google Scholar
Keck, P. J. et al. Vascular permeability factor, an endothelial cell mitogen related to PDGF. Science246, 1309–1312 (1989). CASPubMed Google Scholar
Venables, J. P. E. Alternative Splicing in Cancer (Transworld Research Network, Kerala, 2006). Google Scholar
Ferrara, N. et al. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature380, 439–442 (1996). ArticleCASPubMed Google Scholar
Ferrara, N. Vascular endothelial growth factor: basic science and clinical progress. Endocr. Rev.25, 581–611 (2004). ArticleCASPubMed Google Scholar
Bates, D. O. et al. VEGF165b, an inhibitory splice variant of vascular endothelial growth factor, is down-regulated in renal cell carcinoma. Cancer Res.62, 4123–4131 (2002). CASPubMed Google Scholar
Perrin, R. M. et al. Diabetic retinopathy is associated with a switch in splicing from anti- to pro-angiogenic isoforms of vascular endothelial growth factor. Diabetologia48, 2422–2427 (2005). ArticleCASPubMed Google Scholar
Nowak, D. G., et al. Expression of pro- and anti-angiogenic isoforms of VEGF is differentially regulated by known splicing and growth factors. J. Cell Sci. (in the press).
Olsson, A. -K., Dimberg, A., Kreuger, J. & Claesson-Welsh, L. VEGF receptor signalling-in control of vascular function. Nature Rev. Mol. Cell Biol.7, 359–371 (2006). ArticleCAS Google Scholar
Kerbel, R. S. Tumor angiogenesis. N. Engl. J. Med.358, 2039–2049 (2008). CAS Google Scholar
Bevan, H. S., Harper, S. J. & Bates, D. O. in Angiogenesis: Basic Science and Clinical Applications (eds Maragoudakis, M. E. & Papadimitriou, E.) 1–26 (Transworld Research Network, Kerala, 2007). Google Scholar
Bevan, H. S. et al. The alternatively spliced anti-angiogenic family of VEGF isoforms, VEGFxxxb, in human kidney development. Nephron Physiol. (in the press).
Cui, T. G. et al. Differentiated human podocytes endogenously express an inhibitory isoform of vascular endothelial growth factor (VEGF165b) mRNA and protein. Am. J. Physiol. Renal Physiol.286, F767–F773 (2004). ArticleCASPubMed Google Scholar
Varey, A. H. et al. VEGF165b, an antiangiogenic VEGF-A isoform, binds and inhibits bevacizumab treatment in experimental colorectal carcinoma: balance of pro- and antiangiogenic VEGF-A isoforms has implications for therapy. Br. J. Cancer98, 1366–1379 (2008). ArticleCASPubMedPubMed Central Google Scholar
Gopi, S. S., Zadeh, M. H., Harper, S. J., Bates, D. O. & Gillatt, G. A. Expression of anti-angiogenic isoform, VEGF165b in transitional cell carcinoma of bladder. BJU Int.101, 29–30 (2008). Google Scholar
Cebe-Suarez, S. et al. Orf virus VEGF-E NZ2 promotes paracellular NRP-1/VEGFR-2 coreceptor assembly via the peptide RPPR. FASEB J. (in the press).
Ruch, C., Skiniotis, G., Steinmetz, M. O., Walz, T. & Ballmer-Hofer, K. Structure of a VEGF–VEGF receptor complex determined by electron microscopy. Nature Struct. Mol. Biol.14, 249–250 (2007). ArticleCAS Google Scholar
Burgess, A. W. et al. An open-and-shut case? Recent insights into the activation of EGF/ErbB receptors. Mol. Cell12, 541–552 (2003). ArticleCASPubMed Google Scholar
Kawamura, H., Li, X., Harper, S. J., Bates, D. O. & Claesson-Welsh, L. VEGF-A165b is a weak in vitro agonist for VEGF receptor-2 due to lack of co-receptor binding and deficient regulation of kinase activity. Cancer Res.68, 4683–4692 (2008). ArticleCASPubMed Google Scholar
Cebe Suarez, S. et al. A VEGF-A splice variant defective for heparan sulfate and neuropilin-1 binding shows attenuated signaling through VEGFR-2. Cell. Mol. Life Sci.63, 2067–2077 (2006). ArticleCASPubMed Google Scholar
Xia, P. et al. Characterization of vascular endothelial growth factor's effect on the activation of protein kinase C, its isoforms, and endothelial cell growth. J. Clin. Invest.98, 2018–2026 (1996). ArticleCASPubMedPubMed Central Google Scholar
Takahashi, T., Ueno, H. & Shibuya, M. VEGF activates protein kinase C-dependent, but Ras-independent Raf–MEK–MAP kinase pathway for DNA synthesis in primary endothelial cells. Oncogene18, 2221–2230 (1999). ArticleCASPubMed Google Scholar
Lamoreaux, W. J., Fitzgerald, M., Reiner, A., Hasty, K. A. & Charles, S. T. Vascular endothelial growth factor increases release of gelatinase A and decreases release of tissue inhibitor of metalloproteinases by microvascular endothelial cells in vitro. Microvasc. Res.55, 29–42 (1998). ArticleCASPubMed Google Scholar
Lambrechts, D. et al. VEGF is a modifier of amyotrophic lateral sclerosis in mice and humans and protects motoneurons against ischemic death. Nature Genet.34, 383–394 (2003). ArticleCASPubMed Google Scholar
Nishijima, K. et al. Vascular endothelial growth factor-A is a survival factor for retinal neurons and a critical neuroprotectant during the adaptive response to ischemic injury. Am. J. Pathol.171, 53–67 (2007). ArticleCASPubMedPubMed Central Google Scholar
Sugimoto, H. et al. Neutralization of circulating vascular endothelial growth factor (VEGF) by anti-VEGF antibodies and soluble VEGF receptor 1 (sFlt-1) induces proteinuria. J. Biol. Chem.278, 12605–12608 (2003). ArticleCASPubMed Google Scholar
Foster, R. R. et al. Functional evidence that vascular endothelial growth factor may act as an autocrine factor on human podocytes. Am. J. Physiol. Renal Physiol.284, F1263–F1273 (2003). ArticleCASPubMed Google Scholar
Foster, R. R., Saleem, M. A., Mathieson, P. W., Bates, D. O. & Harper, S. J. Vascular endothelial growth factor and nephrin interact and reduce apoptosis in human podocytes. Am. J. Physiol. Renal Physiol.288, F48–F57 (2005). ArticleCASPubMed Google Scholar
Woolard, J. et al. VEGF165b, an inhibitory vascular endothelial growth factor splice variant: mechanism of action, in vivo effect on angiogenesis and endogenous protein expression. Cancer Res.64, 7822–7835 (2004). ArticleCASPubMed Google Scholar
Rennel, E. S. et al. The endogenous anti-angiogenic VEGF isoform, VEGF165b inhibits human tumour growth in mice. Br. J. Cancer98, 1250–1257 (2008). ArticleCASPubMedPubMed Central Google Scholar
Konopatskaya, O., Churchill, A. J., Harper, S. J., Bates, D. O. & Gardiner, T. A. VEGF165b, an endogenous C-terminal splice variant of VEGF, inhibits retinal neovascularisation in mice. Mol. Vis.12, 626–632 (2006). CASPubMed Google Scholar
Rennel, E. S., et al. Recombinant human vascular endothelial growth factor (VEGF165b) protein is an effective anti-cancer agent in mice. Eur. J. Cancer44, 1883–1894 (2008). ArticleCASPubMedPubMed Central Google Scholar
Ku, D. D., Zaleski, J. K., Liu, S. & Brock, T. A. Vascular endothelial growth factor induces EDRF-dependent relaxation in coronary arteries. Am. J. Physiol. Heart Circ. Physiol.265, H586–H592 (1993). ArticleCAS Google Scholar
Bates, D. O. & Curry, F. E. Vascular endothelial growth factor increases hydraulic conductivity of isolated perfused microvessels. Am. J. Physiol. Heart Circ. Physiol.271, H2520–H2528 (1996). ArticleCAS Google Scholar
Ferrara, N., Houck, K. A., Jakeman, L. B., Winer, J. & Leung, D. W. The vascular endothelial growth factor family of polypeptides. J. Cell Biochem.47, 211–218 (1991). ArticleCASPubMed Google Scholar
Mitchell, C. A. et al. Unique vascular phenotypes following over-expression of individual VEGF-A isoforms from the developing lens. Angiogenesis9, 209–224 (2006). ArticlePubMed Google Scholar
Glass, C. A., Harper, S. J. & Bates, D. O. The anti-angiogenic VEGF isoform VEGF165b transiently increases hydraulic conductivity, probably through VEGF receptor 1 in vivo. J. Physiol.572, 243–257 (2006). ArticleCASPubMedPubMed Central Google Scholar
Qiu, Y. et al. Mammary alveolar development during lactation is inhibited by the endogenous antiangiogenic growth factor isoform, VEGF165b. FASEB J.22, 1104–1112 (2008). ArticleCASPubMed Google Scholar
Budge, J. R., Fryer, J. D. & Bates, D. O. Intraperitoneal administration of recombinant human VEGF165b inhibits dissemination of metatatic melanoma cells in vivo. Microcirculation17, 18–19 (2008). Google Scholar
Pritchard-Jones, R. O. et al. Expression of VEGFxxxb, the inhibitory isoforms of VEGF, in malignant melanoma. Br. J. Cancer97, 223–230 (2007). ArticleCASPubMedPubMed Central Google Scholar
Diaz, R. et al. p73 isoforms affect VEGF, VEGF165b and PEDF expression in human colorectal tumors: VEGF165b downregulation as a marker of poor prognosis. Int. J. Cancer123, 1060–1067 (2008). ArticleCASPubMed Google Scholar
Magnussen, A. et al. VEGF165b is more potent at inhibiting endothelial cell migration than Pegabtanib and is cytoprotective for retinal pigmented epithelial cells. FASEB J.22, 746.14 (2008).
Baffert, F., L. T. et al. Cellular changes in normal blood capillaries undergoing regression after inhibition of VEGF signaling. Am. J. Physiol. Heart Circ. Physiol.290, H547–H559 (2006). ArticleCASPubMed Google Scholar
Ghigna, C. et al. in Alternative Splicing in Cancer (ed. Venables, J.P.) 197–208 (Transworld Research Network, Kerala, 2006). Google Scholar
Muro, A. F., Iaconcig, A. & Baralle, F. E. Regulation of the fibronectin EDA exon alternative splicing. Cooperative role of the exonic enhancer element and the 5′ splicing site. FEBS Lett.437, 137–141 (1998). ArticleCASPubMed Google Scholar
Schaal, T. D. & Maniatis, T. Multiple distinct splicing enhancers in the protein-coding sequences of a constitutively spliced pre-mRNA. Mol. Cell Biol.19, 261–273 (1999). ArticleCASPubMedPubMed Central Google Scholar
Venables, J. P. Aberrant and alternative splicing in cancer. Cancer Res.64, 7647–7654 (2004). ArticleCASPubMed Google Scholar
Caceres, J. F. & Kornblihtt, A. R. Alternative splicing: multiple control mechanisms and involvement in human disease. Trends Genet.18, 186–193 (2002). ArticleCASPubMed Google Scholar
Neufeld, G. et al. Similarities and differences between the vascular endothelial growth factor (VEGF) splice variants. Cancer Metastasis Rev.15, 153–158 (1996). ArticleCASPubMed Google Scholar
Amir-Ahmady, B., Boutz, P. L., Markovtsov, V., Phillips, M. L. & Black, D. L. Exon repression by polypyrimidine tract binding protein. RNA11, 699–716 (2005). ArticleCASPubMedPubMed Central Google Scholar
Coles, L. S. et al. A multi-protein complex containing cold shock domain (Y-box) and polypyrimidine tract binding proteins forms on the vascular endothelial growth factor mRNA. Potential role in mRNA stabilization. Eur. J. Biochem.271, 648–660 (2004). ArticleCASPubMed Google Scholar
Bakkour, N. et al. Small-molecule inhibition of HIV pre-mRNA splicing as a novel antiretroviral therapy to overcome drug resistance. PLoS Pathog.3, 1530–1539 (2007). ArticleCASPubMed Google Scholar
Kendall, R. L. & Thomas, K. A. Inhibition of vascular endothelial cell growth factor activity by an endogenously encoded soluble receptor. Proc. Natl Acad. Sci. USA90, 10705–10709 (1993). ArticleCASPubMedPubMed Central Google Scholar
Kou, B. et al. In vivo inhibition of tumor angiogenesis by a soluble VEGFR-2 fragment. Exp. Mol. Pathol.76, 129–137 (2004). ArticleCASPubMed Google Scholar
Jin, P. et al. Novel splice variants derived from the receptor tyrosine kinase superfamily are potential therapeutics for rheumatoid arthritis. Arthritis Res. Ther.10, R73 (2008). ArticlePubMedPubMed Central Google Scholar
Gagnon, M. L. et al. Identification of a natural soluble neuropilin-1 that binds vascular endothelial growth factor: In vivo expression and antitumor activity. Proc. Natl Acad. Sci. USA97, 2573–2578 (2000). ArticleCASPubMedPubMed Central Google Scholar
Saarela, J., Ylikarppa, R., Rehn, M., Purmonen, S. & Pihlajaniemi, T. Complete primary structure of two variant forms of human type XVIII collagen and tissue-specific differences in the expression of the corresponding transcripts. Matrix Biol.16, 319–328 (1998). ArticleCASPubMed Google Scholar
Bates, D. O. & Harper, S. J. Therapeutic potential of inhibitory VEGF splice variants. Fut. Oncol.1, 467–473 (2005). ArticleCAS Google Scholar
Jin, W. & Cote, G.J. Enhancer-dependent splicing of _FGFR1_α-exon is repressed by RNA interference-mediated down-regulation of SRp55. Cancer Res.64, 8901–8905 (2004). ArticleCASPubMed Google Scholar
Pugh, C. W. & Ratcliffe, P. J. Regulation of angiogenesis by hypoxia: role of the HIF system. Nature Med.9, 677–684 (2003). ArticleCASPubMed Google Scholar
Whittle, C., Gillespie, K., Harrison, R., Mathieson, P. W. & Harper, S. J. Heterogeneous vascular endothelial growth factor (VEGF) isoform mRNA and receptor mRNA expression in human glomeruli, and the identification of VEGF148 mRNA, a novel truncated splice variant. Clin. Sci. (Lond.)97, 303–312 (1999). ArticleCAS Google Scholar
Koenigsberger, C., Chicca, J. J. 2nd, Amoureux, M. C., Edelman, G. M. & Jones, F. S. Differential regulation by multiple promoters of the gene encoding the neuron-restrictive silencer factor. Proc. Natl Acad. Sci. USA97, 2291–2296 (2000). ArticleCASPubMedPubMed Central Google Scholar
Starovasnik, M. A. et al. Solution structure of the VEGF-binding domain of Flt-1: comparison of its free and bound states. J. Mol. Biol.293, 531–544 (1999). ArticleCASPubMed Google Scholar
Muller, Y. A., Christinger, H. W., Keyt, B. A. & de Vos, A. M. The crystal structure of vascular endothelial growth factor (VEGF) refined to 1.93 Å resolution: multiple copy flexibility and receptor binding. Structure5, 1325–1338 (1997). ArticleCASPubMed Google Scholar
Fairbrother, W. J., Champe, M. A., Christinger, H. W., Keyt, B. A. & Starovasnik, M. A. Solution structure of the heparin-binding domain of vascular endothelial growth factor. Structure6, 637–648 (1998). ArticleCASPubMed Google Scholar
Keck, R. G., Berleau, L., Harris, R. & Keyt, B. A. Disulfide structure of the heparin binding domain in vascular endothelial growth factor: characterization of posttranslational modifications in VEGF. Arch. Biochem. Biophys.344, 103–113 (1997). ArticleCASPubMed Google Scholar
Claffey, K. P., Senger, D. R. & Spiegelman, B. M. Structural requirements for dimerization, glycosylation, secretion, and biological function of VPF/VEGF. Biochim. Biophys. Acta Prot. Struct. Mol. Enzymol.1246, 1–9 (1995). Article Google Scholar