Dinh, P., Harnett, P., Piccart-Gebhart, M. J. & Awada, A. New therapies for ovarian cancer: cytotoxics and molecularly targeted agents. Crit. Rev. Oncol. Hematol.67, 103–112 (2008). ArticlePubMed Google Scholar
Agarwal, R. & Kaye, S. B. Ovarian cancer: strategies for overcoming resistance to chemotherapy. Nature Rev. Cancer3, 502–516 (2003). ArticleCAS Google Scholar
Balvert-Locht, H. R. et al. Improved prognosis of ovarian cancer in the Netherlands during the period 1975–1985: a registry-based study. Gynecol. Oncol.42, 3–8 (1991). ArticleCASPubMed Google Scholar
Ozols, R. F. et al. Phase III trial of carboplatin and paclitaxel compared with cisplatin and paclitaxel in patients with optimally resected stage III ovarian cancer: a Gynecologic Oncology Group study. J. Clin. Oncol.21, 3194–3200 (2003). A key study that confirmed the role of paclitaxel and carboplatin in ovarian cancer treatment. ArticleCASPubMed Google Scholar
du Bois, A., Neijt, J. P. & Thigpen, J. T. First line chemotherapy with carboplatin plus paclitaxel in advanced ovarian cancer — a new standard of care? Ann. Oncol.10 (Suppl. 1), 35–41 (1999). ArticlePubMed Google Scholar
Biagi, J. J. & Eisenhauer, E. A. Systemic treatment policies in ovarian cancer: the next 10 years. Int. J. Gynecol. Cancer13 (Suppl. 2), 231–240 (2003). ArticlePubMed Google Scholar
Neijt, J. P. et al. Exploratory phase III study of paclitaxel and cisplatin versus paclitaxel and carboplatin in advanced ovarian cancer. J. Clin. Oncol.18, 3084–3092 (2000). ArticleCASPubMed Google Scholar
Sandercock, J., Parmar, M. K., Torri, V. & Qian, W. First-line treatment for advanced ovarian cancer: paclitaxel, platinum and the evidence. Br. J. Cancer87, 815–824 (2002). An important editorial that raises questions about the extent of benefit of paclitaxel and carboplatin over single-agent carboplatin. ArticleCASPubMedPubMed Central Google Scholar
Greenlee, R. T., Hill-Harmon, M. B., Murray, T. & Thun, M. Cancer statistics, 2001. CA Cancer J. Clin.51, 15–36 (2001). ArticleCASPubMed Google Scholar
Gore, M. E., Fryatt, I., Wiltshaw, E. & Dawson, T. Treatment of relapsed carcinoma of the ovary with cisplatin or carboplatin following initial treatment with these compounds. Gynecol. Oncol.36, 207–211 (1990). One of the first papers to describe the importance of the platinum-free interval following platinum-based treatment in ovarian cancer. ArticleCASPubMed Google Scholar
De Placido, S. et al. Topotecan compared with no therapy after response to surgery and carboplatin/paclitaxel in patients with ovarian cancer: Multicenter Italian Trials in Ovarian Cancer (MITO-1) randomized study. J. Clin. Oncol.22, 2635–2642 (2004). ArticleCASPubMed Google Scholar
Bookman, M. A., Greer, B. E. & Ozols, R. F. Optimal therapy of advanced ovarian cancer: carboplatin and paclitaxel vs. cisplatin and paclitaxel (GOG 158) and an update on GOG0 182-ICON5. Int. J. Gynecol. Cancer13, 735–740 (2003). ArticleCASPubMed Google Scholar
Monk, B. J. et al. A randomized phase III study of trabectedin with pegylated liposomal doxorubiciin (PLD) versus PLD in relapsed, recurrent ovarian cancer (OC). Ann. Oncol., 19, (Supp. 8), viii1–viii4 (2008). Google Scholar
Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell100, 57–70 (2000). A key paper that describes the major therapeutic targets in cancer. ArticleCASPubMed Google Scholar
Hicklin, D. J. & Ellis, L. M. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J. Clin. Oncol.23, 1011–1027 (2005). ArticleCASPubMed Google Scholar
Martin, L. & Schilder, R. Novel approaches in advancing the treatment of epithelial ovarian cancer: the role of angiogenesis inhibition. J. Clin. Oncol.25, 2894–2901 (2007). ArticleCASPubMed Google Scholar
Ramakrishnan, S., Subramanian, I. V., Yokoyama, Y. & Geller, M. Angiogenesis in normal and neoplastic ovaries. Angiogenesis8, 169–182 (2005). ArticleCASPubMed Google Scholar
Burger, R. A. Experience with bevacizumab in the management of epithelial ovarian cancer. J. Clin. Oncol.25, 2902–2908 (2007). One of the first detailed reviews of this new treatment. ArticleCASPubMed Google Scholar
Nagy, J. A., Meyers, M. S., Masse, E. M., Herzberg, K. T. & Dvorak, H. F. Pathogenesis of ascites tumor growth: fibrinogen influx and fibrin accumulation in tissues lining the peritoneal cavity. Cancer Res.55, 369–375 (1995). CASPubMed Google Scholar
Yoshiji, H. et al. The vascular endothelial growth factor receptor KDR/Flk-1 is a major regulator of malignant ascites formation in the mouse hepatocellular carcinoma model. Hepatology33, 841–847 (2001). ArticleCASPubMed Google Scholar
Spannuth, W. A., Sood, A. K. & Coleman, R. L. Angiogenesis as a strategic target for ovarian cancer therapy. Nature Clin. Pract. Oncol.5, 194–204 (2008). An excellent recent review of this topic. ArticleCAS Google Scholar
Mesiano, S., Ferrara, N. & Jaffe, R. B. Role of vascular endothelial growth factor in ovarian cancer: inhibition of ascites formation by immunoneutralization. Am. J. Pathol.153, 1249–1256 (1998). ArticleCASPubMedPubMed Central Google Scholar
Gossmann, A. et al. Magnetic resonance imaging in an experimental model of human ovarian cancer demonstrating altered microvascular permeability after inhibition of vascular endothelial growth factor. Am. J. Obstet. Gynecol.183, 956–963 (2000). ArticleCASPubMed Google Scholar
Hu, L. et al. Vascular endothelial growth factor immunoneutralization plus paclitaxel markedly reduces tumor burden and ascites in athymic mouse model of ovarian cancer. Am. J. Pathol.161, 1917–1924 (2002). ArticleCASPubMedPubMed Central Google Scholar
Byrne, A. T. et al. Vascular endothelial growth factor-trap decreases tumor burden, inhibits ascites, and causes dramatic vascular remodeling in an ovarian cancer model. Clin. Cancer Res.9, 5721–5728 (2003). CASPubMed Google Scholar
Xu, L. et al. Inhibition of malignant ascites and growth of human ovarian carcinoma by oral administration of a potent inhibitor of the vascular endothelial growth factor receptor tyrosine kinases. Int. J. Oncol.16, 445–454 (2000). CASPubMed Google Scholar
Machida, S. et al. Inhibition of peritoneal dissemination of ovarian cancer by tyrosine kinase receptor inhibitor SU6668 (TSU-68). Int. J. Cancer114, 224–229 (2005). ArticleCASPubMed Google Scholar
Cannistra, S. A. et al. Phase II study of bevacizumab in patients with platinum-resistant ovarian cancer or peritoneal serous cancer. J. Clin. Oncol.25, 5180–5186 (2007). ArticleCASPubMed Google Scholar
Burger, R. A., Sill, M. W., Monk, B. J., Greer, B. E. & Sorosky, J. I. Phase II trial of bevacizumab in persistent or recurrent epithelial ovarian cancer or primary peritoneal cancer: a Gynecologic Oncology Group Study. J. Clin. Oncol.25, 5165–5171 (2007). ArticleCASPubMed Google Scholar
Han, E. S. & Monk, B. J. What is the risk of bowel perforation associated with bevacizumab therapy in ovarian cancer? Gynecol. Oncol.105, 3–6 (2007). ArticleCASPubMed Google Scholar
Kaye, S. B. Bevacizumab for the treatment of epithelial ovarian cancer: will this be its finest hour? J. Clin. Oncol.25, 5150–5152 (2007). ArticleCASPubMed Google Scholar
Tew, W. P. et al. VEGF-Trap for patients with recurrent platinum-resistant epithelial ovarian cancer (EOC): preliminary results of a randomized, multicenter phase II study. J. Clin. Oncol.25 (Suppl.), 5508 (2007). Google Scholar
Biagi, J. J. et al. A phase II study of sunitinib (SU11248) in patients with recurrent epithelial ovarian, fallopian tube, or primary peritoneal carcinoma - NCIC GTG IND 185. J. Clin. Oncol.26, (Suppl.), 5522 (2008). Article Google Scholar
Friedlander, M. et al. Pazopanib (GW786034) is active in women with advanced epithelial ovarian, fallopian tube and peritoneal cancers: initial results of a phase II study. J. Clin. Oncol.25 (Suppl.), 5561 (2007). Google Scholar
Hirte, H. W. et al. A phase II study of cediranib (AZD2171) in recurrent or persistent ovarian, peritoneal or fallopian tube cancer: Final results of a PMH, Chicago and California consortia trial. J. Clin. Oncol.26 (Suppl.), 5521 (2008). Article Google Scholar
Matei, D., Sill, M. W., De Geest, K. & Bristow, R. E. Phase II trial of sorafenib in persistent or recurrent epithelial ovarian cancer (EOC) or primary peritoneal cancer (PPC): a Gynecologic Oncology Group (GOG) study. J. Clin. Oncol.26 (Suppl.), 5537 (2008). Article Google Scholar
Matulonis, U. A. et al. Cediranib (AZD2171) is an active agent in recurrent epithelial ovarian cancer. J. Clin. Oncol.26 (Suppl.), 5501 (2008). Article Google Scholar
Fukumura, D. & Jain, R. K. Tumor microenvironment abnormalities: causes, consequences, and strategies to normalize. J. Cell. Biochem.101, 937–949 (2007). ArticleCASPubMed Google Scholar
Hu, L. et al. Vascular endothelial growth factor trap combined with paclitaxel strikingly inhibits tumor and ascites, prolonging survival in a human ovarian cancer model. Clin. Cancer Res.11, 6966–6971 (2005). ArticleCASPubMed Google Scholar
Garofalo, A. et al. The combination of the tyrosine kinase receptor inhibitor SU6668 with paclitaxel affects ascites formation and tumor spread in ovarian carcinoma xenografts growing orthotopically. Clin. Cancer Res.9, 3476–3485 (2003). CASPubMed Google Scholar
Naumova, E. et al. The vascular targeting property of paclitaxel is enhanced by SU6668, a receptor tyrosine kinase inhibitor, causing apoptosis of endothelial cells and inhibition of angiogenesis. Clin. Cancer Res.12, 1839–1849 (2006). ArticleCASPubMed Google Scholar
Zhong, X. et al. Mechanisms underlying the synergistic effect of SU5416 and cisplatin on cytotoxicity in human ovarian tumor cells. Int. J. Oncol.25, 445–451 (2004). CASPubMed Google Scholar
Azad, N. S. et al. Combination targeted therapy with sorafenib and bevacizumab results in enhanced toxicity and antitumor activity. J. Clin. Oncol.26, 3709–3714 (2008). One of the first studies describing the challenges associated with combinations of targeted treatments. ArticleCASPubMed Google Scholar
Nimeiri, H. S. et al. Efficacy and safety of bevacizumab plus erlotinib for patients with recurrent ovarian, primary peritoneal, and fallopian tube cancer: a trial of the Chicago, PMH, and California Phase II Consortia. Gynecol. Oncol.110, 49–55 (2008). ArticleCASPubMedPubMed Central Google Scholar
Nathan, P. et al. A phase I study of combretastatin A4 phosphate (CA4P) and bevacizumab in subjects with advanced solid tumors. J. Clin. Oncol.26 (Suppl.), 3550 (2008). Article Google Scholar
Shaked, Y. et al. Therapy-induced acute recruitment of circulating endothelial progenitor cells to tumors. Science313, 1785–1787 (2006). ArticleCASPubMed Google Scholar
Schilder, R. J. et al. Phase II evaluation of imatinib mesylate in the treatment of recurrent or persistent epithelial ovarian or primary peritoneal carcinoma: a Gynecologic Oncology Group Study. J. Clin. Oncol.26, 3418–3425 (2008). ArticleCASPubMed Google Scholar
Henriksen, R. et al. Expression and prognostic significance of platelet-derived growth factor and its receptors in epithelial ovarian neoplasms. Cancer Res.53, 4550–4554 (1993). CASPubMed Google Scholar
Matei, D. et al. Autocrine activation of PDGFRα promotes the progression of ovarian cancer. Oncogene25, 2060–2069 (2006). ArticleCASPubMed Google Scholar
Alberts, D. S. et al. Phase II trial of imatinib mesylate in recurrent, biomarker positive, ovarian cancer (Southwest Oncology Group Protocol S0211). Int. J. Gynecol. Cancer17, 784–788 (2007). ArticleCASPubMed Google Scholar
Coleman, R. L. et al. Phase II trial of imatinib mesylate in patients with recurrent platinum- and taxane-resistant epithelial ovarian and primary peritoneal cancers. Gynecol. Oncol.101, 126–131 (2006). ArticleCASPubMed Google Scholar
Matei, D. et al. Imatinib mesylate in combination with docetaxel for the treatment of patients with advanced, platinum-resistant ovarian cancer and primary peritoneal carcinomatosis: a Hoosier Oncology Group trial. Cancer113, 723–732 (2008). ArticleCASPubMed Google Scholar
Posadas, E. M. et al. A prospective analysis of imatinib-induced c-KIT modulation in ovarian cancer: a phase II clinical study with proteomic profiling. Cancer110, 309–317 (2007). ArticleCASPubMed Google Scholar
Matei, D., Chang, D. D. & Jeng, M. H. Imatinib mesylate (Gleevec) inhibits ovarian cancer cell growth through a mechanism dependent on platelet-derived growth factor receptor α and Akt inactivation. Clin. Cancer Res.10, 681–690 (2004). ArticleCASPubMed Google Scholar
Jayson, G. C. et al. Blockade of platelet-derived growth factor receptor-β by CDP860, a humanized, PEGylated di-Fab', leads to fluid accumulation and is associated with increased tumor vascularized volume. J. Clin. Oncol.23, 973–981 (2005). ArticleCASPubMed Google Scholar
Bergers, G., Song, S., Meyer-Morse, N., Bergsland, E. & Hanahan, D. Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. J. Clin. Invest.111, 1287–1295 (2003). ArticleCASPubMedPubMed Central Google Scholar
Bartlett, J. M. et al. The prognostic value of epidermal growth factor receptor mRNA expression in primary ovarian cancer. Br. J. Cancer73, 301–306 (1996). ArticleCASPubMedPubMed Central Google Scholar
Fischer-Colbrie, J. et al. EGFR and steroid receptors in ovarian carcinoma: comparison with prognostic parameters and outcome of patients. Anticancer Res.17, 613–619 (1997). CASPubMed Google Scholar
Sirotnak, F. M., Zakowski, M. F., Miller, V. A., Scher, H. I. & Kris, M. G. Efficacy of cytotoxic agents against human tumor xenografts is markedly enhanced by coadministration of ZD1839 (Iressa), an inhibitor of EGFR tyrosine kinase. Clin. Cancer Res.6, 4885–4892 (2000). CASPubMed Google Scholar
Ciardiello, F. et al. Antitumor effect and potentiation of cytotoxic drugs activity in human cancer cells by ZD-1839 (Iressa), an epidermal growth factor receptor-selective tyrosine kinase inhibitor. Clin. Cancer Res.6, 2053–2063 (2000). CASPubMed Google Scholar
Schilder, R. J. et al. Phase II study of gefitinib in patients with relapsed or persistent ovarian or primary peritoneal carcinoma and evaluation of epidermal growth factor receptor mutations and immunohistochemical expression: a Gynecologic Oncology Group Study. Clin. Cancer Res.11, 5539–5548 (2005). ArticleCASPubMed Google Scholar
Bookman, M. A., Darcy, K. M., Clarke-Pearson, D., Boothby, R. A. & Horowitz, I. R. Evaluation of monoclonal humanized anti-HER2 antibody, trastuzumab, in patients with recurrent or refractory ovarian or primary peritoneal carcinoma with overexpression of HER2: a phase II trial of the Gynecologic Oncology Group. J. Clin. Oncol.21, 283–290 (2003). ArticleCASPubMed Google Scholar
Kaye, S. B. et al. A randomised phase II study evaluating the combination of carboplatin-based chemotherapy wiht pertuzumab versus carboplatin-based therapy alone in patients with relapsed, platinum sensitive ovarian cancer. J. Clin. Oncol.26 (Suppl.), 5520 (2008). Article Google Scholar
Amler, L. et al. HER pathway gene expression analysis in a phase II study of pertuzumab + gemcitabine vs gemcitabine + placebo in patients with platinum-resistant epithelial ovarian cancer. J. Clin. Oncol.26 (Suppl.), 5552 (2008). Article Google Scholar
Elnakat, H. & Ratnam, M. Role of folate receptor genes in reproduction and related cancers. Front. Biosci.11, 506–519 (2006). ArticleCASPubMed Google Scholar
Ebel, W. et al. Preclinical evaluation of MORAb-003, a humanized monoclonal antibody antagonizing folate receptor-α. Cancer Immun.7, 6 (2007). PubMedPubMed Central Google Scholar
Armstrong, D. et al. Exploratory phase II efficacy study of MORAb-003, a monoclonal antibody against folate receptor-α, in platinum-sensitive ovarian cancer in first relapse. J. Clin. Oncol.26 (Suppl.), 5500 (2008). Article Google Scholar
Gibbs, D. D. et al. BGC 945, a novel tumor-selective thymidylate synthase inhibitor targeted to α-folate receptor-overexpressing tumors. Cancer Res.65, 11721–11728 (2005). ArticleCASPubMed Google Scholar
Ame, J. C., Spenlehauer, C. & de Murcia, G. The PARP superfamily. Bioessays26, 882–893 (2004). ArticleCASPubMed Google Scholar
Dantzer, F. et al. Base excision repair is impaired in mammalian cells lacking poly(ADP-ribose) polymerase-1. Biochemistry39, 7559–7569 (2000). ArticleCASPubMed Google Scholar
Tutt, A. N. et al. Exploiting the DNA repair defect in BRCA mutant cells in the design of new therapeutic strategies for cancer. Cold Spring Harb. Symp. Quant. Biol.70, 139–148 (2005). ArticleCASPubMed Google Scholar
Gudmundsdottir, K. & Ashworth, A. The roles of BRCA1 and BRCA2 and associated proteins in the maintenance of genomic stability. Oncogene25, 5864–5874 (2006). ArticleCASPubMed Google Scholar
Ashworth, A. A synthetic lethal therapeutic approach: poly(ADP) ribose polymerase inhibitors for the treatment of cancers deficient in DNA double-strand break repair. J. Clin. Oncol.26, 3785–3790 (2008). An excellent recent review of PARP inhibitors. ArticleCASPubMed Google Scholar
Farmer, H. et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature434, 917–921 (2005). ArticleCASPubMed Google Scholar
Bryant, H. E. et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature434, 913–917 (2005). References 79 and 80 describe the basis of this new approach for the first time. ArticleCASPubMed Google Scholar
Fong, P. C. et al. Phase I pharmacokinetic (PK) and pharmacodynamic (PD) evaluation of a small molecule inhibitor of poly ADP-ribose polymerase (PARP), KU-0059436 (Ku) in patients (p) with advanced tumours. J. Clin. Oncol.24 (Suppl.), 3022 (2006). Google Scholar
Yap, T. A. et al. First in human phase I pharmacokinetic (PK) and pharmacodynamic (PD) study of KU-0059436 (Ku), a small molecule inhibitor of poly ADP-ribose polymerase (PARP) in cancer patients (p), including BRCA1/2 mutation carriers. J. Clin. Oncol.25 (Suppl.), 3529 (2007). Google Scholar
Fong, P. C. et al. AZD2281 (KU-0059436), a PARP (poly ADP-ribose polymerase) inhibitor with single agent anticancer activity in patients with BRCA deficient ovarian cancer: results from a phase I study. J. Clin. Oncol.26 (Suppl.), 5510 (2008). Article Google Scholar
Carden, C. et al. A Phase I study of AZD2281 (KU-0059436), a PARP (poly ADP-ribose polymerase) inhibitor: results in patients with BRCA deficient ovarian cancer (BDOC). Abst. BOA22, 320. (National Cancer Research Institute Cancer Conference, 2008].
Turner, N., Tutt, A. & Ashworth, A. Hallmarks of 'BRCAness' in sporadic cancers. Nature Rev. Cancer4, 814–819 (2004). ArticleCAS Google Scholar
McCabe, N. et al. Deficiency in the repair of DNA damage by homologous recombination and sensitivity to poly(ADP-ribose) polymerase inhibition. Cancer Res.66, 8109–8115 (2006). ArticleCASPubMed Google Scholar
Press, J. Z. et al. Ovarian carcinomas with genetic and epigenetic BRCA1 loss have distinct molecular abnormalities. BMC Cancer8, 17 (2008). ArticlePubMedPubMed CentralCAS Google Scholar
Engelman, J. A., Luo, J. & Cantley, L. C. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nature Rev. Genet.7, 606–619 (2006). ArticleCASPubMed Google Scholar
Hu, L., Hofmann, J. & Jaffe, R. B. Phosphatidylinositol 3-kinase mediates angiogenesis and vascular permeability associated with ovarian carcinoma. Clin. Cancer Res.11, 8208–8212 (2005). ArticleCASPubMed Google Scholar
Vivanco, I. & Sawyers, C. L. The phosphatidylinositol 3-kinase AKT pathway in human cancer. Nature Rev. Cancer2, 489–501 (2002). ArticleCAS Google Scholar
Yap, T. A. et al. Targeting the PI3K–AKT–mTOR pathway: progress, pitfalls, and promises. Curr. Opin. Pharmacol.8, 393–412 (2008). ArticleCASPubMed Google Scholar
Hennessy, B. T., Smith, D. L., Ram, P. T., Lu, Y. & Mills, G. B. Exploiting the PI3K/AKT pathway for cancer drug discovery. Nature Rev. Drug Discov.4, 988–1004 (2005). An excellent review of this important topic. ArticleCAS Google Scholar
Lopiccolo, J., Blumenthal, G. M., Bernstein, W. B. & Dennis, P. A. Targeting the PI3K/Akt/mTOR pathway: effective combinations and clinical considerations. Drug Resist. Updat.11, 32–50 (2008). ArticleCASPubMed Google Scholar
Shayesteh, L. et al. PIK3CA is implicated as an oncogene in ovarian cancer. Nature Genet.21, 99–102 (1999). ArticleCASPubMed Google Scholar
Levine, D. A. et al. Frequent mutation of the PIK3CA gene in ovarian and breast cancers. Clin. Cancer Res.11, 2875–2878 (2005). ArticleCASPubMed Google Scholar
Campbell, I. G. et al. Mutation of the PIK3CA gene in ovarian and breast cancer. Cancer Res.64, 7678–7681 (2004). ArticleCASPubMed Google Scholar
Philp, A. J. et al. The phosphatidylinositol 3′-kinase p85α gene is an oncogene in human ovarian and colon tumors. Cancer Res.61, 7426–7429 (2001). CASPubMed Google Scholar
Trotman, L. C. & Pandolfi, P. P. PTEN and p53: who will get the upper hand? Cancer Cell3, 97–99 (2003). ArticleCASPubMed Google Scholar
Obata, K. et al. Frequent PTEN/MMAC mutations in endometrioid but not serous or mucinous epithelial ovarian tumors. Cancer Res.58, 2095–2097 (1998). CASPubMed Google Scholar
Jiang, B. H. & Liu, L. Z. PI3K/PTEN signaling in tumorigenesis and angiogenesis. Biochim. Biophys. Acta1784, 150–158 (2008). ArticleCASPubMed Google Scholar
Cheng, J. Q., Lindsley, C. W., Cheng, G. Z., Yang, H. & Nicosia, S. V. The Akt/PKB pathway: molecular target for cancer drug discovery. Oncogene24, 7482–7492 (2005). ArticleCASPubMed Google Scholar
Page, C. et al. Overexpression of Akt/AKT can modulate chemotherapy-induced apoptosis. Anticancer Res.20, 407–416 (2000). CASPubMed Google Scholar
Hu, L., Hofmann, J., Lu, Y., Mills, G. B. & Jaffe, R. B. Inhibition of phosphatidylinositol 3′-kinase increases efficacy of paclitaxel in in vitro and in vivo ovarian cancer models. Cancer Res.62, 1087–1092 (2002). CASPubMed Google Scholar
Yang, X., Fraser, M., Moll, U. M., Basak, A. & Tsang, B. K. Akt-mediated cisplatin resistance in ovarian cancer: modulation of p53 action on caspase-dependent mitochondrial death pathway. Cancer Res.66, 3126–3136 (2006). ArticleCASPubMed Google Scholar
Arboleda, M. J. et al. Overexpression of AKT2/protein kinase Bβ leads to up-regulation of β1 integrins, increased invasion, and metastasis of human breast and ovarian cancer cells. Cancer Res.63, 196–206 (2003). CASPubMed Google Scholar
Yuan, Z. Q. et al. Frequent activation of AKT2 and induction of apoptosis by inhibition of phosphoinositide-3-OH kinase/Akt pathway in human ovarian cancer. Oncogene19, 2324–2330 (2000). ArticleCASPubMed Google Scholar
Cheng, J. Q. et al. AKT2, a putative oncogene encoding a member of a subfamily of protein-serine/threonine kinases, is amplified in human ovarian carcinomas. Proc. Natl Acad. Sci. USA89, 9267–9271 (1992). ArticleCASPubMedPubMed Central Google Scholar
Bellacosa, A. et al. Molecular alterations of the AKT2 oncogene in ovarian and breast carcinomas. Int. J. Cancer64, 280–285 (1995). ArticleCASPubMed Google Scholar
Nakayama, K. et al. Sequence mutations and amplification of PIK3CA and AKT2 genes in purified ovarian serous neoplasms. Cancer Biol. Ther.5, 779–785 (2006). ArticleCASPubMed Google Scholar
Carpten, J. D. et al. A transforming mutation in the pleckstrin homology domain of AKT1 in cancer. Nature448, 439–444 (2007). ArticleCASPubMed Google Scholar
Oza, A. et al. A phase II study of temsirolimus (CCI-779) in patients with metastatic and/or locally advanced recurrent endometrial cancer previously treated with chemotherapy: NCIC CTG IND 160b. J. Clin. Oncol.26 (Suppl.), 5516 (2008). Article Google Scholar
Slomovitz, B. et al. A phase II study of oral mammalian target of rapamycin (mTOR) inhibitor, RAD001 (everolimus), in patients with recurrent endometrial carcinoma (EC). J. Clin. Oncol.26 (Suppl.), 5502 (2008). Article Google Scholar
Wiener, J. R. et al. Activated SRC protein tyrosine kinase is overexpressed in late-stage human ovarian cancers. Gynecol. Oncol.88, 73–79 (2003). ArticleCASPubMed Google Scholar
Dressman, H. K. et al. An integrated genomic-based approach to individualized treatment of patients with advanced-stage ovarian cancer. J. Clin. Oncol.25, 517–525 (2007). An important paper that highlights the role of the oncogeneSRCin ovarian cancer. ArticleCASPubMed Google Scholar
Yu, K., Toral-Barza, L., Shi, C., Zhang, W. G. & Zask, A. Response and determinants of cancer cell susceptibility to PI3K inhibitors: combined targeting of PI3K and Mek1 as an effective anticancer strategy. Cancer Biol. Ther.7, 307–315 (2008). PubMed Google Scholar
Tan, D.S. et al. PPM1D is a potential therapeutic target in ovarian clear cell carcinomas. Clin. Cancer Res. (in the press).
Visvader, J. E. & Lindeman, G. J. Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nature Rev. Cancer8, 755–768 (2008). ArticleCAS Google Scholar
Szotek, P. P. et al. Ovarian cancer side population defines cells with stem cell-like characteristics and Mullerian inhibiting substance responsiveness. Proc. Natl Acad. Sci. USA103, 11154–11159 (2006). An important paper confirming the existence of cancer stem cells in ovarian cancer. ArticleCASPubMedPubMed Central Google Scholar
Zhang, S. et al. Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer Res.68, 4311–4320 (2008). ArticleCASPubMedPubMed Central Google Scholar
Workman, P. & Kaye, S. B. Translating basic cancer research into new cancer therapeutics. Trends Mol. Med.8, S1–S9 (2002). ArticlePubMed Google Scholar
Thomas, G. V. mTOR and cancer: reason for dancing at the crossroads? Curr. Opin. Genet. Dev.16, 78–84 (2006). ArticleCASPubMed Google Scholar
Banerji, U., de Bono, J., Judson, I., Kaye, S. & Workman, P. Biomarkers in early clinical trials: the committed and the skeptics. Clin. Cancer Res.14, 2512 (2008). ArticlePubMed Google Scholar
Workman, P. Auditing the pharmacological accounts for Hsp90 molecular chaperone inhibitors: unfolding the relationship between pharmacokinetics and pharmacodynamics. Mol. Cancer Ther.2, 131–138 (2003). ArticleCASPubMed Google Scholar
Workman, P. How much gets there and what does it do? The need for better pharmacokinetic and pharmacodynamic endpoints in contemporary drug discovery and development. Curr. Pharm. Des.9, 891–902 (2003). ArticleCASPubMed Google Scholar
Sarker, D. & Workman, P. Pharmacodynamic biomarkers for molecular cancer therapeutics. Adv. Cancer Res.96, 213–268 (2007). ArticleCASPubMed Google Scholar
Srinivasan, M., Sedmak, D. & Jewell, S. Effect of fixatives and tissue processing on the content and integrity of nucleic acids. Am. J. Pathol.161, 1961–1971 (2002). ArticleCASPubMedPubMed Central Google Scholar
Wu, J. M. et al. Heterogeneity of breast cancer metastases: comparison of therapeutic target expression and promoter methylation between primary tumors and their multifocal metastases. Clin. Cancer Res.14, 1938–1946 (2008). ArticleCASPubMedPubMed Central Google Scholar
Chan, J. K. et al. A novel technique for the enrichment of primary ovarian cancer cells. Am. J. Obstet. Gynecol.197, 507 e1–e5 (2007). Article Google Scholar
Barker, S. D. et al. An immunomagnetic-based method for the purification of ovarian cancer cells from patient-derived ascites. Gynecol. Oncol.82, 57–63 (2001). ArticleCASPubMed Google Scholar
Provencher, D. M. et al. Comparison of antigen expression on fresh and cultured ascites cells and on solid tumors of patients with epithelial ovarian cancer. Gynecol. Oncol.50, 78–83 (1993). ArticleCASPubMed Google Scholar
Puiffe, M. L. et al. Characterization of ovarian cancer ascites on cell invasion, proliferation, spheroid formation, and gene expression in an in vitro model of epithelial ovarian cancer. Neoplasia9, 820–829 (2007). ArticleCASPubMedPubMed Central Google Scholar
Forster, M. D., Ormerod, M. G., Agarwal, R., Kaye, S. B. & Jackman, A. L. Flow cytometric method for determining folate receptor expression on ovarian carcinoma cells. Cytometry A71, 945–950 (2007). ArticlePubMed Google Scholar
Pantel, K., Brakenhoff, R. H. & Brandt, B. Detection, clinical relevance and specific biological properties of disseminating tumour cells. Nature Rev. Cancer8, 329–340 (2008). ArticleCAS Google Scholar
Marth, C., Kisic, J., Kaern, J., Trope, C. & Fodstad, O. Circulating tumor cells in the peripheral blood and bone marrow of patients with ovarian carcinoma do not predict prognosis. Cancer94, 707–712 (2002). ArticlePubMed Google Scholar
Nagrath, S. et al. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature450, 1235–1239 (2007). ArticleCASPubMedPubMed Central Google Scholar
Sessa, C. et al. Trabectedin for women with ovarian carcinoma after treatment with platinum and taxanes fails. J. Clin. Oncol.23, 1867–1874 (2005). ArticleCASPubMed Google Scholar
Krasner, C. N. et al. A Phase II study of trabectedin single agent in patients with recurrent ovarian cancer previously treated with platinum-based regimens. Br. J. Cancer97, 1618–1624 (2007). ArticleCASPubMedPubMed Central Google Scholar
del Campo, J. et al. Phase II open label randomized study of trabectedin (T) given as two different dosing schedules in women with platinum-sensitive, recurrent ovarian carcinoma: preliminary results. J. Clin. Oncol.24 (Suppl.), 5031 (2006). Google Scholar
Smit, W. M. et al. Phase I/II dose-escalation trial of patupilone every 3 weeks in patients with relapsed/refractory ovarian cancer. J. Clin. Oncol.23 (Suppl.), 5056 (2005). Article Google Scholar
Forster, M. et al. A phase Ib and pharmacokinetic trial of patupilone combined with carboplatin in patients with advanced cancer. Clin. Cancer Res.13, 4178–4184 (2007). ArticleCASPubMed Google Scholar
Kavanagh, J. J. et al. Multi-institutional phase 2 study of TLK286 (TELCYTA, a glutathione S-transferase P1–1 activated glutathione analog prodrug) in patients with platinum and paclitaxel refractory or resistant ovarian cancer. Int. J. Gynecol. Cancer15, 593–600 (2005). CASPubMed Google Scholar
Rose, P. et al. Canfosfamide (C, TLK286) plus carboplatin (P) vs. liposomal doxorubicin (D) as 2nd line therapy of platinum (P) resistant ovarian cancer (OC): phase 3 study results. J. Clin. Oncol.25 (Suppl.), 5529 (2007). Google Scholar
Vergote, I. et al. Single agent, canfosfamide (C, TLK286) vs pegylated liposomal doxorubicin (D) or topotecan (T) in 3rd line treatment of platinum (P) refractory or resistant ovarian cancer (OC): phase 3 study results. J. Clin. Oncol.25 (Suppl.), 5528 (2007). Google Scholar
Garcia, A. A. et al. Phase II clinical trial of bevacizumab and low-dose metronomic oral cyclophosphamide in recurrent ovarian cancer: a trial of the California, Chicago, and Princess Margaret Hospital phase II consortia. J. Clin. Oncol.26, 76–82 (2008). ArticleCASPubMed Google Scholar
McGonigle, K. F. et al. A phase II prospective study of weekly topotecan and bevacizumab in platinum refractory ovarian or peritoneal cancer. J. Clin. Oncol.26 (Suppl.), 5551 (2008). Article Google Scholar
Micha, J. P. et al. A phase II study of outpatient first-line paclitaxel, carboplatin, and bevacizumab for advanced-stage epithelial ovarian, peritoneal, and fallopian tube cancer. Int. J. Gynecol. Cancer17, 771–776 (2007). ArticleCASPubMed Google Scholar
Campos, S. M. et al. Safety of maintenance bevacizumab after first-line chemotherapy for advanced ovarian and mullerian cancers. J. Clin. Oncol.25 (Suppl.), 5517 (2007). Google Scholar
Posadas, E. M. et al. A phase II and pharmacodynamic study of gefitinib in patients with refractory or recurrent epithelial ovarian cancer. Cancer109, 1323–1330 (2007). ArticleCASPubMed Google Scholar
Slomovitz, B. M. et al. Phase I study of weekly topotecan and gefitinib in patients with platinum-resistant ovarian, peritoneal, or fallopian tube cancer. J. Clin. Oncol.24 (Suppl.), 5090 (2006). Google Scholar
Pautier, F. et al. Gefitinib in combination with paclitaxel and carboplatin as second-line therapy for ovarian, tubal or peritoneal adenocarcinoma: final results of a phase II study. J. Clin. Oncol.25 (Suppl.), 5566 (2007). Google Scholar
Wagner, U. et al. Gefitinib in combination with tamoxifen in patients with ovarian cancer refractory or resistant to platinum-taxane based therapy — a phase II trial of the AGO Ovarian Cancer Study Group (AGO-OVAR 2.6). Gynecol. Oncol.105, 132–137 (2007). ArticleCASPubMed Google Scholar
Gordon, A. N. et al. Efficacy and safety of erlotinib HCl, an epidermal growth factor receptor (HER1/EGFR) tyrosine kinase inhibitor, in patients with advanced ovarian carcinoma: results from a phase II multicenter study. Int. J. Gynecol. Cancer15, 785–792 (2005). ArticleCASPubMed Google Scholar
Vasey, P. A. et al. A phase Ib trial of docetaxel, carboplatin and erlotinib in ovarian, fallopian tube and primary peritoneal cancers. Br. J. Cancer98, 1774–1780 (2008). ArticleCASPubMedPubMed Central Google Scholar
Blank, S. V. et al. Report of first-stage accrual for NCI 5886, a phase II study of erlotinib, carboplatin and paclitaxel as first-line treatment of ovarian cancer. J. Clin. Oncol.24 (Suppl.), 5076 (2006). Google Scholar
Schilder, R. J. et al. Phase II trial of single agent cetuximab in patients with persistent or recurrent epithelial ovarian or primary peritoneal carcinoma with the potential for dose escalation to rash. Gynecol. Oncol. 21 Jan 2009 (doi:10.1016/j.ygyno.2008.12.003).
Konner, J. et al. A phase II study of cetuximab/paclitaxel/carboplatin for the initial treatment of advanced-stage ovarian, primary peritoneal, or fallopian tube cancer. Gynecol. Oncol.110, 140–145 (2008). ArticleCASPubMed Google Scholar
Secord, A. A. et al. Phase II trial of cetuximab and carboplatin in relapsed platinum-sensitive ovarian cancer and evaluation of epidermal growth factor receptor expression: a Gynecologic Oncology Group study. Gynecol. Oncol.108, 493–499 (2008). ArticleCASPubMedPubMed Central Google Scholar
Seiden, M. V. et al. A phase II trial of EMD72000 (matuzumab), a humanized anti-EGFR monoclonal antibody, in patients with platinum-resistant ovarian and primary peritoneal malignancies. Gynecol. Oncol.104, 727–731 (2007). ArticleCASPubMed Google Scholar
Gordon, M. S. et al. Clinical activity of pertuzumab (rhuMAb 2C4), a HER dimerization inhibitor, in advanced ovarian cancer: potential predictive relationship with tumor HER2 activation status. J. Clin. Oncol.24, 4324–4332 (2006). ArticleCASPubMed Google Scholar
Rivkin, S. E. et al. Phase I/II lapatinib plus carboplatin and paclitaxel in stage III or IV relapsed ovarian cancer patients. J. Clin. Oncol.26 (Suppl.), 5556 (2008). Article Google Scholar
Campos, S. et al. Multicenter, randomized phase II trial of oral CI-1033 for previously treated advanced ovarian cancer. J. Clin. Oncol.23, 5597–5604 (2005). ArticleCASPubMed Google Scholar
Armstrong, D. K. et al. Exploratory phase II efficacy study of MORAb-003, a monoclonal antibody against folate receptor-α, in platinum-sensitive ovarian cancer in first relapse. J. Clin. Oncol.26, 1 (2008). Google Scholar