Specialization of tumour vasculature (original) (raw)
Ruoslahti, E. Targeting tumor vasculature with homing peptides from phage display. Semin Cancer Biol10, 435–442 (2000). ArticleCASPubMed Google Scholar
Veikkola, T., Karkkainen, M., Claesson-Welsh, L. & Alitalo, K. Regulation of angiogenesis via vascular endothelial growth factor receptors. Cancer Res.60, 203–212 (2000). CASPubMed Google Scholar
Jackson, D. G., Prevo, R., Clasper, S. & Banerji, S. LYVE-1, the lymphatic system and tumor lymphangiogenesis. Trends Immunol.22, 317–321 (2001). ArticleCASPubMed Google Scholar
Maniotis, A. J. et al. Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. Am. J. Pathol.155, 739–752 (1999).The authors propose that the PAS-positive structures found in highly aggressive melanomas are manifestations of the ability of the tumour cells to form vascular channelsin vivo. They refer to this phenomenon as 'vasculogenic mimicry' (see also references4and6). ArticleCASPubMedPubMed Central Google Scholar
McDonald, D. M., Munn, L. & Jain, R. K. Vasculogenic mimicry: how convincing, how novel, and how significant? Am. J. Pathol.156, 383–388 (2000).A critique of the vasculogenic mimicry concept proposed in reference5. ArticleCASPubMedPubMed Central Google Scholar
Chang, Y. S. et al. Mosaic blood vessels in tumors: frequency of cancer cells in contact with flowing blood. Proc. Natl Acad. Sci. USA97, 14608–14613 (2000).Shows that a surprisingly high percentage of the inner lining of tumour blood vessels can be covered by tumour cells, rather than endothelial cells. ArticleCASPubMedPubMed Central Google Scholar
Hanahan, D. & Folkman, J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell86, 353–364 (1996). ArticleCASPubMed Google Scholar
Ferrara, N. & Alitalo, K. Clinical applications of angiogenic growth factors and their inhibitors. Nature Med.5, 1359–1364 (1999). ArticleCASPubMed Google Scholar
Holash, J. et al. Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science284, 1994–1998 (1999). ArticleCASPubMed Google Scholar
Jain, R. K. The Eugene M. Landis Award Lecture 1996. Delivery of molecular and cellular medicine to solid tumors. Microcirculation4, 1–23 (1997). ArticleCASPubMed Google Scholar
Hashizume, H. et al. Openings between defective endothelial cells explain tumor vessel leakiness. Am. J. Pathol.156, 1363–1380 (2000). ArticleCASPubMedPubMed Central Google Scholar
Hellstrom, M. et al. Lack of pericytes leads to endothelial hyperplasia and abnormal vascular morphogenesis. J. Cell Biol.153, 543–553 (2001). ArticleCASPubMedPubMed Central Google Scholar
Plate, K. H., Breier, G., Millauer, B., Ullrich, A. & Risau, W. Up-regulation of vascular endothelial growth factor and its cognate receptors in a rat glioma model of tumor angiogenesis. Cancer Res.53, 5822–5827 (1993). CASPubMed Google Scholar
Valtola, R. et al. VEGFR-3 and its ligand VEGF-C are associated with angiogenesis in breast cancer. Am. J. Pathol.154, 1381–1390 (1999). ArticleCASPubMedPubMed Central Google Scholar
Gerety, S. S., Wang, H. U., Chen, Z. F. & Anderson, D. J. Symmetrical mutant phenotypes of the receptor Eph-4 and its specific transmembrane ligand ephrin-B2 in cardiovascular development. Mol Cell4, 403–414 (1999). ArticleCASPubMed Google Scholar
Pandey, A., Shao, H., Marks, R. M., Polverini, P. J. & Dixit, V. M. Role of B61, the ligand for the Eck receptor tyrosine kinase, in TNF-α-induced angiogenesis. Science268, 567–569 (1995). ArticleCASPubMed Google Scholar
Ogawa, K. et al. The ephrin-A1 ligand and its receptor, EphA2, are expressed during tumor neovascularization. Oncogene19, 6043–6052 (2000). ArticleCASPubMed Google Scholar
Shin, D. et al. Expression of EphrinB2 identifies a stable genetic difference between arterial and venous vascular cells, and marks subsets of adult neovascularization. Dev. Biol.230, 139–150 (2001). ArticleCASPubMed Google Scholar
Gale, N. W. et al. Ephrin-B2 selectively marks arterial vessels and neovascularization sites in the adult, with expression in both endothelial and smooth muscle cells. Dev. Biol.230, 151–160 (2001). ArticleCASPubMed Google Scholar
Balza, E. et al. Lack of specificity of endoglin expression for tumor blood vessels. Int. J. Cancer94, 579–585 (2001). ArticleCASPubMed Google Scholar
Brooks, P. C., Clark, R. A. & Cheresh, D. A. Requirement of vascular integrin αvβ3 for angiogenesis. Science264, 569–571 (1994). ArticleCASPubMed Google Scholar
Erdreich-Epstein, A. et al. Integrins αvβ3 and αvβ5 are expressed by endothelium of high-risk neuroblastoma and their inhibition is associated with increased endogenous ceramide. Cancer Res.60, 712–721 (2000). CASPubMed Google Scholar
Conforti, G. et al. Human endothelial cells express integrin receptors on the luminal aspect of their membrane. Blood80, 437–446 (1992). ArticleCASPubMed Google Scholar
Kim, S., Bell, K., Mousa, S. A. & Varner, J. A. Regulation of angiogenesis in vivo by ligation of integrin α5β1 with the central cell-binding domain of fibronectin. Am. J. Pathol.156, 1345–1362 (2000). ArticleCASPubMedPubMed Central Google Scholar
Senger, D. R. et al., Angiogenesis promoted by vascular endothelial growth factor: regulation through α1β1 and α2β1 integrins. Proc. Natl Acad. Sci. USA94, 13612–13617 (1997). ArticleCASPubMedPubMed Central Google Scholar
Brooks, P. C. et al. Antiintegrin αvβ3 blocks human breast cancer growth and angiogenesis in human skin. J. Clin. Invest.96, 1815–1822 (1995). ArticleCASPubMedPubMed Central Google Scholar
Eliceiri, B. P. & Cheresh, D. A. The role of αv integrins during angiogenesis: insights into potential mechanisms of action and clinical development. J. Clin. Invest.103, 1227–1230 (1999). ArticleCASPubMedPubMed Central Google Scholar
Dallabrida, S. M., De Sousa, M. A. & Farrell, D. H. Expression of antisense to integrin subunit β3 inhibits microvascular endothelial cell capillary tube formation in fibrin. J. Biol. Chem.275, 32281–32288 (2000). ArticleCASPubMed Google Scholar
Yang, J. T., Rayburn, H. & Hynes, R. O. Embryonic mesodermal defects in α5 integrin-deficient mice. Development119, 1093–1105 (1993). ArticleCASPubMed Google Scholar
Reynolds, L. E. et al. Enhanced pathological angiogenesis in mice lacking β3 integin or β3 and β5 integins. Nature Med.8, 27–34 (2002). ArticleCASPubMed Google Scholar
Bader, B. L., Rayburn, H., Crowley, D. & Hynes, R. O. Extensive vasculogenesis, angiogenesis, and organogenesis precede lethality in mice lacking all αv integrins. Cell95, 507–519 (1998). ArticleCASPubMed Google Scholar
Wary, K. K., Mainiero, F., Isakoff, S. J., Marcantonio, E. E. & Giancotti, F. G. The adaptor protein Shc couples a class of integrins to the control of cell cycle progression. Cell87, 733–743 (1996). ArticleCASPubMed Google Scholar
Matter, M. L. & Ruoslahti, E. A signaling pathway from the α5β1 and αvβ3 integrins that elevates BCL-2 transcription. J. Biol. Chem.276, 27757–27763 (2001). ArticleCASPubMed Google Scholar
Stupack, D. G., Puente, X. S., Boutsaboualoy, S., Storgard, C. M. & Cheresh, D. A. Apoptosis of adherent cells by recruitment of caspase-8 to unligated integrins. J. Cell Biol.155, 459–470 (2001). ArticleCASPubMedPubMed Central Google Scholar
Borges, E., Jan, Y. & Ruoslahti, E. Platelet-derived growth factor receptor-β and vascular endothelial growth factor receptor 2 bind to the β3 integrin through its extracellular domain. J. Biol. Chem.275, 39867–39873 (2000). ArticleCASPubMed Google Scholar
Byzova, T. V. et al. A mechanism for modulation of cellular responses to VEGF: activation of the integrins. Mol. Cell6, 851–860 (2000). CASPubMed Google Scholar
Friedlander, M. et al. Definition of two angiogenic pathways by distinct αv integrins. Science270, 1500–1502 (1995). ArticleCASPubMed Google Scholar
Pozzi, A. et al. Elevated matrix metalloprotease and angiostatin levels in integrin α1 knockout mice cause reduced tumor vascularization. Proc. Natl Acad. Sci. USA97, 2202–2207 (2000). ArticleCASPubMedPubMed Central Google Scholar
Silletti, S., Kessler, T., Goldberg, J., Boger, D. L. & Cheresh, D. A. Disruption of matrix metalloproteinase 2 binding to integrin αvβ3 by an organic molecule inhibits angiogenesis and tumor growth in vivo. Proc. Natl Acad. Sci. USA98, 119–124 (2001).The latest in the use of the αvβ3 integrin in inhibiting angiogenesis. Exemplifies the central role of this integrin in angiogenesis. But see also reference33, which reports that mice lacking this integrin have enhanced tumour-induced angiogenesis. CASPubMed Google Scholar
Deryugina, E. I., Bourdon, M. A., Jungwirth, K., Smith, J. W. & Strongin, A. Y. Functional activation of integrin αvβ3 in tumor cells expressing membrane-type 1 matrix metalloproteinase. Int. J. Cancer86, 15–23 (2000). ArticleCASPubMed Google Scholar
Yi, M. & Ruoslahti, E. A fibronectin fragment inhibits tumor growth, angiogenesis, and metastasis. Proc. Natl Acad. Sci. USA98, 620–624 (2001). ArticleCASPubMedPubMed Central Google Scholar
Arap, W., Pasqualini, R. & Ruoslahti, E. Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science279, 377–380 (1998). ArticleCASPubMed Google Scholar
Brown, C. K., Modzelewski, R. A., Johnson, C. S. & Wong, M. K. A novel approach for the identification of unique tumor vasculature binding peptides using an E. coli peptide display library. Ann. Surg. Oncol.7, 743–749 (2000). ArticleCASPubMed Google Scholar
Kennel, S. J. et al. Labeling and distribution of linear peptides identified using in vivo phage display selection for tumors. Nucl. Med. Biol.27, 815–825 (2000). ArticleCASPubMed Google Scholar
Assa-Munt, N., Jia, X., Laakkonen, P. & Ruoslahti, E. Solution structures and integrin binding activities of an RGD peptide with two isomers. Biochemistry40, 2373–2378 (2001). ArticleCASPubMed Google Scholar
Pasqualini, R. et al. Aminopeptidase N is a receptor for tumor-homing peptides and a target for inhibiting angiogenesis. Cancer Res.60, 722–727 (2000). CASPubMedPubMed Central Google Scholar
Bhagwat, S. V. et al. CD13/APN is activated by angiogenic signals and is essential for capillary tube formation. Blood97, 652–659 (2001). ArticleCASPubMed Google Scholar
St Croix, B. et al. Genes expressed in human tumor endothelium. Science289, 1197–1202 (2000). ArticleCASPubMed Google Scholar
Carson-Walter, E. B. et al. Cell surface tumor endothelial markers are conserved in mice and humans. Cancer Res.61, 6649–6655 (2001). CASPubMed Google Scholar
Schlingemann, R. O., Rietveld, F. J., de Waal, R. M., Ferrone, S. & Ruiter, D. J. Expression of the high molecular weight melanoma-associated antigen by pericytes during angiogenesis in tumors and in healing wounds. Am. J. Pathol.136, 1393–1405 (1990). CASPubMedPubMed Central Google Scholar
Schrappe, M. et al. Correlation of chrondroitin sulfate proteoglycan expression on proliferating brain capillary endothelial cells with the malignant phenotype of astroglial cells. Cancer Res.51, 4986–4993 (1991). CASPubMed Google Scholar
Ozerdem, U., Grako, K. A., Dahlin-Huppe, K., Monosov, E. & Stallcup, W. B. NG2 proteoglycan is expressed exclusively by mural cells during vascular morphogenesis. Dev. Dyn.222, 218–227 (2001). ArticleCASPubMed Google Scholar
Burg, M. A., Pasqualini, R., Arap, W., Ruoslahti, E. & Stallcup, W. B. NG2 proteoglycan-binding peptides target tumor neovasculature. Cancer Res.59, 2869–2874 (1999). CASPubMed Google Scholar
Castellani, P. et al. The fibronectin isoform containing the ED-B oncofetal domain; a marker of angiogenesis. Int. J. Cancer59, 612–618 (1994). ArticleCASPubMed Google Scholar
Nilsson, F., Kosmehl, H., Zardi, L. & Neri, D. Targeted delivery of tissue factor to the ED-B domain of fibronectin, a marker of angiogenesis, mediates the infarction of solid tumors in mice. Cancer Res.61, 711–716 (2001).The latest from a group that established the ED-B splicing variant of fibronectin as a marker of the extracellular matrix in angiogenic vessels. CASPubMed Google Scholar
Contrino, J., Hair, G., Kreutzer, D. L. & Rickles, F. R. In situ detection of tissue factor in vascular endothelial cells: correlation with the malignant phenotype of human breast disease. Nature Med.2, 209–215 (1996). ArticleCASPubMed Google Scholar
Hu, Z. & Garen, A. Targeting tissue factor on tumor vascular endothelial cells and tumor cells for immunotherapy in mouse models of prostatic cancer. Proc. Natl Acad. Sci. USA98, 12180–12185 (2001). ArticleCASPubMedPubMed Central Google Scholar
Leu, A. J., Berk, D. A., Lymboussaki, A., Alitalo, K. & Jain, R. K. Absence of functional lymphatics within murine sarcoma: a molecular and functional evaluation. Cancer Res.60, 4324–4327 (2000). CASPubMed Google Scholar
Breiteneder-Geleff, S. et al. Angiosarcomas express mixed endothelial phenotypes of blood and lymphatic capillaries: podoplanin as a specific marker for lymphatic endothelium. Am. J. Pathol.154, 385–394 (1999). ArticleCASPubMedPubMed Central Google Scholar
Mouta-Carreira, C. et al. LYVE-1 is not restricted to the lymph vessels: expression in normal liver blood sinusoids and down-regulation in human liver cancer cirrhosis. Cancer Res.61, 8079–8084 (2001). CASPubMed Google Scholar
Mandriota, S. J. et al. Vascular endothelial growth factor-C-mediated lymphangiogenesis promotes tumour metastasis. EMBO J.20, 672–682 (2001).In this paper and in references66and68, the authors use VEGFC and VEGFD to selectively promote the growth of lymphatic vessels in and around tumours in mice. They find a strong correlation between the density of lymphatic vessels and lymphatic metastasis. ArticleCASPubMedPubMed Central Google Scholar
Stacker, S. A. et al. VEGF-D promotes the metastatic spread of tumor cells via the lymphatics. Nature Med.7, 186–191 (2001). ArticleCASPubMed Google Scholar
Fukuda, H., Yamada, T., Kamata, S. & Saitoh, H. Anatomic distribution of intraprostatic lymphatics: implications for the lymphatic spread of prostate cancer — a preliminary study. Prostate44, 322–327 (2000). ArticleCASPubMed Google Scholar
Skobe, M. et al. Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nature Med.7, 192–198 (2001). ArticleCASPubMed Google Scholar
Pepper, M. S. Lymphangiogenesis and tumor metastasis: myth or reality? Clin. Cancer Res.7, 462–468 (2001). CASPubMed Google Scholar
Mäkinen, T. et al. Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF-C/D receptor VEGFR-3. EMBO J.20, 4762–4773 (2001). ArticlePubMedPubMed Central Google Scholar
Hendrix, M. J. et al. Expression and functional significance of VE-cadherin in aggressive human melanoma cells: role in vasculogenic mimicry. Proc. Natl Acad. Sci. USA98, 8018–8023 (2001). ArticleCASPubMedPubMed Central Google Scholar
Hess, A. R. et al. Molecular regulation of tumor cell vasculogenic mimicry by tyrosine phosphorylation: role of epithelial cell kinase (Eck/EphA2). Cancer Res.61, 3250–3255 (2001). CASPubMed Google Scholar
Seftor, R. E. B. et al. Cooperative interactions of laminin α5β2 chain, matrix metalloproteinase-2, and membrane type-matrix/metallo-proteinase are required for mimicry of embryonic vasculogenesis by aggressive melanoma. Cancer Res.61, 6322–6327 (2001). CASPubMed Google Scholar
Damsky, C. H. & Fisher, S. J. Trophoblast pseudo-vasculogenesis: faking it with endothelial adhesion receptors. Curr. Opin. Cell Biol.10, 660–666 (1998). ArticleCASPubMed Google Scholar
Kerbel, R. S. Inhibition of tumor angiogenesis as a strategy to circumvent acquired resistance to anti-cancer therapeutic agents. Bioessays13, 31–36 (1991). ArticleCASPubMed Google Scholar
Sipkins, D. A. Detection of tumor angiogenesis in vivo by αvβ3-targeted magnetic resonance imaging. Nature Med.4, 623–626 (1998).Ligand-occupied VEGF receptor might be a more specific marker of angiogenesis than the receptor itself. ArticleCASPubMed Google Scholar
Ellerby, H. M. et al. Anti-cancer activity of targeted pro-apoptotic peptides. Nature Med.5, 1032–1038 (1999).Tumour-homing peptides were used to direct a peptide that disrupts bacterial membranes into target cells, where the anti-bacterial peptide breaks up mitochondrial membranes, inducing apoptosis. ArticleCASPubMed Google Scholar
Chen, Y. et al. RGD-tachyplesin inhibits tumor growth. Cancer Res.61, 2434–2438 (2001). CASPubMed Google Scholar
Curnis, F. et al. Enhancement of tumor necrosis factor antitumor immunotherapeutic properties by targeted delivery to aminopeptidase N (CD13). Nature Biotechnol.18, 1185–1190 (2000). ArticleCAS Google Scholar
Cooke, S. P. et al. A strategy for antitumor vascular therapy by targeting the vascular endothelial growth factor: receptor complex. Cancer Res.61, 3653–3659 (2001). CASPubMed Google Scholar
Carmeliet, P. & Jain, R. K. Angiogenesis in cancer and other diseases. Nature407, 249–257 (2000). ArticleCASPubMed Google Scholar