Libby, P., Aikawa, M. & Schonbeck, U. Cholesterol and atherosclerosis. Biochim. Biophys. Acta1529, 299–309 (2000). ArticleCASPubMed Google Scholar
Tabas, I. Consequences and therapeutic implications of macrophage apoptosis in atherosclerosis: the importance of lesion stage and phagocytic efficiency. Arterioscler. Thromb. Vasc. Biol.25, 2255–2264 (2005). ArticleCASPubMed Google Scholar
Tabas, I. Macrophage death and defective inflammation resolution in atherosclerosis. Nat. Rev. Immunol.10, 36–46 (2010). ArticleCASPubMed Google Scholar
Waldo, S. W. et al. Heterogeneity of human macrophages in culture and in atherosclerotic plaques. Am. J. Pathol.172, 1112–1126 (2008). ArticlePubMedPubMed Central Google Scholar
Bouhlel, M. A. et al. PPARγ activation primes human monocytes into alternative M2 macrophages with anti-inflammatory properties. Cell Metab.6, 137–143 (2007). ArticleCASPubMed Google Scholar
Geissmann, F., Jung, S. & Littman, D. R. Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity19, 71–82 (2003). ArticleCASPubMed Google Scholar
Gordon, S. & Taylor, P. R. Monocyte and macrophage heterogeneity. Nat. Rev. Immunol.5, 953–964 (2005). ArticleCASPubMed Google Scholar
Jenkins, S. J. et al. Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation. Science332, 1284–1288 (2011). ArticleCASPubMedPubMed Central Google Scholar
Robbins, C. S. et al. Local proliferation dominates lesional macrophage accumulation in atherosclerosis. Nat. Med.19, 1166–1172 (2013). ArticleCASPubMedPubMed Central Google Scholar
Jenkins, S. J. et al. IL-4 directly signals tissue-resident macrophages to proliferate beyond homeostatic levels controlled by CSF-1. J. Exp. Med.210, 2477–2491 (2013). ArticleCASPubMedPubMed Central Google Scholar
Verreck, F. A. et al. Human IL-23-producing type 1 macrophages promote but IL-10-producing type 2 macrophages subvert immunity to (myco) acteria. Proc. Natl Acad. Sci. USA101, 4560–4565 (2004). ArticleCASPubMedPubMed Central Google Scholar
Mantovani, A. et al. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol.25, 677–686 (2004). ArticleCASPubMed Google Scholar
Anderson, C. F., Gerber, J. S. & Mosser, D. M. Modulating macrophage function with IgG immune complexes. J. Endotoxin. Res.8, 477–481 (2002). ArticleCASPubMed Google Scholar
Zizzo, G., Hilliard, B. A., Monestier, M. & Cohen, P. L. Efficient clearance of early apoptotic cells by human macrophages requires M2c polarization and MerTK induction. J. Immunol.189, 3508–3520 (2012). ArticleCASPubMed Google Scholar
Jetten, N. et al. Anti-inflammatory M2, but not proinflammatory M1 macrophages promote angiogenesis in vivo. Angiogenesis17, 109–118 (2014). ArticleCASPubMed Google Scholar
Lee, C. G. et al. Interleukin-13 induces tissue fibrosis by selectively stimulating and activating transforming growth factor β1 . J. Exp. Med.194, 809–821 (2001). ArticleCASPubMedPubMed Central Google Scholar
Martinez, F. O., Gordon, S., Locati, M. & Mantovani, A. Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J. Immunol.177, 7303–7311 (2006). ArticleCASPubMed Google Scholar
Porcheray, F. et al. Macrophage activation switching: an asset for the resolution of inflammation. Clin. Exp. Immunol.142, 481–489 (2005). CASPubMedPubMed Central Google Scholar
Feig, J. E. et al. HDL promotes rapid atherosclerosis regression in mice and alters inflammatory properties of plaque monocyte-derived cells. Proc. Natl Acad. Sci. USA108, 7166–7171 (2011). ArticlePubMedPubMed Central Google Scholar
Duewell, P. et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature464, 1357–1361 (2010). ArticleCASPubMedPubMed Central Google Scholar
van Tits, L. J. et al. Oxidized LDL enhances pro-inflammatory responses of alternatively activated M2 macrophages: a crucial role for Kruppel-like factor 2. Atherosclerosis214, 345–349 (2011). ArticleCASPubMed Google Scholar
Hirose, K. et al. Different responses to oxidized low-density lipoproteins in human polarized macrophages. Lipids Health Dis.10, 1 (2011). ArticleCASPubMedPubMed Central Google Scholar
Bae, Y. S. et al. Macrophages generate reactive oxygen species in response to minimally oxidized low-density lipoprotein: Toll-like receptor 4- and spleen tyrosine kinase-dependent activation of NADPH oxidase 2. Circ. Res.104, 210–218 (2009). ArticleCASPubMed Google Scholar
Fang, L. et al. Oxidized cholesteryl esters and phospholipids in zebrafish larvae fed a high cholesterol diet: macrophage binding and activation. J. Biol. Chem.285, 32343–32351 (2010). ArticleCASPubMedPubMed Central Google Scholar
Sottero, B. et al. Expression and synthesis of TGFβ1 is induced in macrophages by 9-oxononanoyl cholesterol, a major cholesteryl ester oxidation product. Biofactors24, 209–216 (2005). ArticleCASPubMed Google Scholar
Serhan, C. N. et al. Maresins: novel macrophage mediators with potent antiinflammatory and proresolving actions. J. Exp. Med.206, 15–23 (2009). ArticleCASPubMedPubMed Central Google Scholar
Titos, E. et al. Resolvin D1 and its precursor docosahexaenoic acid promote resolution of adipose tissue inflammation by eliciting macrophage polarization toward an M2-like phenotype. J. Immunol.187, 5408–5418 (2011). ArticleCASPubMed Google Scholar
Mitchell, P. L. & McLeod, R. S. Conjugated linoleic acid and atherosclerosis: studies in animal models. Biochem. Cell Biol.86, 293–301 (2008). ArticleCASPubMed Google Scholar
McCarthy, C. et al. IL-10 mediates the immunoregulatory response in conjugated linoleic acid-induced regression of atherosclerosis. FASEB J.27, 499–510 (2013). ArticleCASPubMed Google Scholar
Kadl, A. et al. Identification of a novel macrophage phenotype that develops in response to atherogenic phospholipids via Nrf2. Circ. Res.107, 737–746 (2010). ArticleCASPubMedPubMed Central Google Scholar
Kadl, A. et al. Oxidized phospholipid-induced inflammation is mediated by Toll-like receptor 2. Free Radic. Biol. Med.51, 1903–1909 (2011). ArticleCASPubMedPubMed Central Google Scholar
Kolodgie, F. D. et al. Intraplaque hemorrhage and progression of coronary atheroma. N. Engl. J. Med.349, 2316–2325 (2003). ArticleCASPubMed Google Scholar
Kockx, M. M. et al. Phagocytosis and macrophage activation associated with hemorrhagic microvessels in human atherosclerosis. Arterioscler. Thromb. Vasc. Biol.23, 440–446 (2003). ArticleCASPubMed Google Scholar
Finn, A. V. et al. Hemoglobin directs macrophage differentiation and prevents foam cell formation in human atherosclerotic plaques. J. Am. Coll. Cardiol.59, 166–177 (2012). ArticleCASPubMed Google Scholar
Nielsen, M. J., Moller, H. J. & Moestrup, S. K. Hemoglobin and heme scavenger receptors. Antioxid. Redox Signal.12, 261–273 (2010). ArticleCASPubMed Google Scholar
Philippidis, P. et al. Hemoglobin scavenger receptor CD163 mediates interleukin-10 release and heme oxygenase-1 synthesis: antiinflammatory monocyte-macrophage responses in vitro, in resolving skin blisters in vivo, and after cardiopulmonary bypass surgery. Circ. Res.94, 119–126 (2004). ArticleCASPubMed Google Scholar
Landis, R. C., Philippidis, P., Domin, J., Boyle, J. J. & Haskard, D. O. Haptoglobin genotype-dependent anti-inflammatory signaling in CD163+ Macrophages. Int. J. Inflam.2013, 980327 (2013). PubMedPubMed Central Google Scholar
Bories, G. et al. Liver X receptor (LXR) activation stimulates iron export in human alternative macrophages. Circ. Res.113, 1196–1205 (2013). ArticleCASPubMedPubMed Central Google Scholar
Recalcati, S. et al. Differential regulation of iron homeostasis during human macrophage polarized activation. Eur. J. Immunol.40, 824–835 (2010). ArticleCASPubMed Google Scholar
Corna, G. et al. Polarization dictates iron handling by inflammatory and alternatively activated macrophages. Haematologica95, 1814–1822 (2010). ArticleCASPubMedPubMed Central Google Scholar
Chinetti-Gbaguidi, G. et al. Human atherosclerotic plaque alternative macrophages display low cholesterol handling but high phagocytosis because of distinct activities of the PPARγ and LXRα pathways. Circ. Res.108, 985–995 (2011). ArticleCASPubMedPubMed Central Google Scholar
Boyle, J. J. et al. Activating transcription factor 1 directs Mhem atheroprotective macrophages through coordinated iron handling and foam cell protection. Circ. Res.110, 20–33 (2012). ArticleCASPubMed Google Scholar
Wan, X. et al. 5′-AMP-activated protein kinase-activating transcription factor 1 cascade modulates human monocyte-derived macrophages to atheroprotective functions in response to heme or metformin. Arterioscler. Thromb. Vasc. Biol.33, 2470–2480 (2013). ArticleCASPubMed Google Scholar
Boyle, J. J. et al. Heme induces heme oxygenase 1 via Nrf2: role in the homeostatic macrophage response to intraplaque hemorrhage. Arterioscler. Thromb. Vasc. Biol.31, 2685–2691 (2011). ArticleCASPubMed Google Scholar
Spann, N. J. et al. Regulated accumulation of desmosterol integrates macrophage lipid metabolism and inflammatory responses. Cell151, 138–152 (2012). ArticleCASPubMedPubMed Central Google Scholar
Sindrilaru, A. et al. An unrestrained proinflammatory M1 macrophage population induced by iron impairs wound healing in humans and mice. J. Clin. Invest.121, 985–997 (2012). ArticleCAS Google Scholar
Wolfs, I. M., Donners, M. M. & de Winther, M. P. Differentiation factors and cytokines in the atherosclerotic plaque micro-environment as a trigger for macrophage polarisation. Thromb. Haemost.106, 763–771 (2011). ArticleCASPubMed Google Scholar
Brocheriou, I. et al. Antagonistic regulation of macrophage phenotype by M-CSF and GM-CSF: implication in atherosclerosis. Atherosclerosis214, 316–324 (2011). ArticleCASPubMed Google Scholar
Plenz, G., Koenig, C., Severs, N. J. & Robenek, H. Smooth muscle cells express granulocyte-macrophage colony-stimulating factor in the undiseased and atherosclerotic human coronary artery. Arterioscler. Thromb. Vasc. Biol.17, 2489–2499 (1997). ArticleCASPubMed Google Scholar
Pitsilos, S. et al. Platelet factor 4 localization in carotid atherosclerotic plaques: correlation with clinical parameters. Thromb. Haemost.90, 1112–1120 (2003). ArticleCASPubMed Google Scholar
Gleissner, C. A. & Ley, K. CXCL4 in atherosclerosis: possible roles in monocyte arrest and macrophage foam cell formation. Thromb. Haemost.98, 917–918 (2007). ArticleCASPubMed Google Scholar
Gleissner, C. A., Shaked, I., Little, K. M. & Ley, K. CXC chemokine ligand 4 induces a unique transcriptome in monocyte-derived macrophages. J. Immunol.184, 4810–4818 (2010). ArticleCASPubMed Google Scholar
Gleissner, C. A. et al. CXCL4 downregulates the atheroprotective hemoglobin receptor CD163 in human macrophages. Circ. Res.106, 203–211 (2010). ArticleCASPubMed Google Scholar
Erbel, C. et al. CXCL4-induced plaque macrophages can be specifically identified by co-expression of MMP7+S100A8+in vitro and in vivo. Innate Immun. (in press).
Stoger, J. L. et al. Distribution of macrophage polarization markers in human atherosclerosis. Atherosclerosis225, 461–468 (2012). ArticleCASPubMed Google Scholar
Cho, K. Y. et al. The phenotype of infiltrating macrophages influences arteriosclerotic plaque vulnerability in the carotid artery. J. Stroke Cerebrovasc. Dis.22, 910–918 (2013). ArticlePubMed Google Scholar
Shaikh, S. et al. Macrophage subtypes in symptomatic carotid artery and femoral artery plaques. Eur. J. Vasc. Endovasc. Surg.44, 491–497 (2012). ArticleCASPubMed Google Scholar
Barlis, P., Serruys, P. W., Devries, A. & Regar, E. Optical coherence tomography assessment of vulnerable plaque rupture: predilection for the plaque 'shoulder'. Eur. Heart J.29, 2023 (2008). ArticlePubMed Google Scholar
Hirata, Y. et al. Enhanced inflammation in epicardial fat in patients with coronary artery disease. Int. Heart J.52, 139–142 (2011). ArticleCASPubMed Google Scholar
Hirata, Y. et al. Coronary atherosclerosis is associated with macrophage polarization in epicardial adipose tissue. J. Am. Coll. Cardiol.58, 248–255 (2011). ArticleCASPubMed Google Scholar
Cougoule, C. et al. Blood leukocytes and macrophages of various phenotypes have distinct abilities to form podosomes and to migrate in 3D environments. Eur. J. Cell Biol.91, 938–949 (2012). ArticleCASPubMed Google Scholar
Lee, C. W. et al. Macrophage heterogeneity of culprit coronary plaques in patients with acute myocardial infarction or stable angina. Am. J. Clin. Pathol.139, 317–322 (2013). ArticleCASPubMed Google Scholar
Huang, W. C., Sala-Newby, G. B., Susana, A., Johnson, J. L. & Newby, A. C. Classical macrophage activation up-regulates several matrix metalloproteinases through mitogen activated protein kinases and nuclear factor-κB. PLoS ONE7, e42507 (2012). ArticleCASPubMedPubMed Central Google Scholar
Feig, J. E. et al. Regression of atherosclerosis is characterized by broad changes in the plaque macrophage transcriptome. PLoS ONE7, e39790 (2012). ArticleCASPubMedPubMed Central Google Scholar
Feig, J. E. et al. Reversal of hyperlipidemia with a genetic switch favorably affects the content and inflammatory state of macrophages in atherosclerotic plaques. Circulation123, 989–998 (2011). ArticleCASPubMedPubMed Central Google Scholar
Gui, T., Shimokado, A., Sun, Y., Akasaka, T. & Muragaki, Y. Diverse roles of macrophages in atherosclerosis: from inflammatory biology to biomarker discovery. Mediators Inflamm.2012, 693083 (2012). ArticleCASPubMedPubMed Central Google Scholar