Goretti, E., Wagner, D. R. & Devaux, Y. miRNAs as biomarkers of myocardial infarction: a step forward towards personalized medicine? Trends Mol. Med.20, 716–725 (2014). ArticleCASPubMed Google Scholar
Ucar, A. et al. The miRNA-212/132 family regulates both cardiac hypertrophy and cardiomyocyte autophagy. Nat. Commun.3, 1078 (2012). ArticleCASPubMed Google Scholar
Kapusta, A. & Feschotte, C. Volatile evolution of long noncoding RNA repertoires: mechanisms and biological implications. Trends Genet.30, 439–452 (2014). ArticleCASPubMedPubMed Central Google Scholar
Erdmann, V. A., Szymanski, M., Hochberg, A., de Groot, N. & Barciszewski, J. Collection of mRNA-like non-coding RNAs. Nucleic Acids Res.27, 192–195 (1999). ArticleCASPubMedPubMed Central Google Scholar
Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature409, 860–921 (2001). ArticleCASPubMed Google Scholar
Mercer, T. R., Dinger, M. E. & Mattick, J. S. Long non-coding RNAs: insights into functions. Nat. Rev. Genet.10, 155–159 (2009). ArticleCASPubMed Google Scholar
Amaral, P. P., Clark, M. B., Gascoigne, D. K., Dinger, M. E. & Mattick, J. S. lncRNAdb: a reference database for long noncoding RNAs. Nucleic Acids Res.39, D146–D151 (2011). ArticleCASPubMed Google Scholar
Xie, C. et al. NONCODEv4: exploring the world of long non-coding RNA genes. Nucleic Acids Res.42, D98–D103 (2014). ArticleCASPubMed Google Scholar
Matkovich, S. J., Edwards, J. R., Grossenheider, T. C., de Guzman Strong, C. & Dorn, G. W. 2nd. Epigenetic coordination of embryonic heart transcription by dynamically regulated long noncoding RNAs. Proc. Natl Acad. Sci. USA111, 12264–12269 (2014). ArticleCASPubMedPubMed Central Google Scholar
Ounzain, S. et al. Genome-wide profiling of the cardiac transcriptome after myocardial infarction identifies novel heart-specific long non-coding RNAs. Eur. Heart J.36, 353–368 (2015). ArticleCASPubMed Google Scholar
Pang, K. C., Frith, M. C. & Mattick, J. S. Rapid evolution of noncoding RNAs: lack of conservation does not mean lack of function. Trends Genet.22, 1–5 (2006). ArticleCASPubMed Google Scholar
Guo, H., Ingolia, N. T., Weissman, J. S. & Bartel, D. P. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature466, 835–840 (2010). ArticleCASPubMedPubMed Central Google Scholar
Kapranov, P. et al. RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science316, 1484–1488 (2007). ArticleCASPubMed Google Scholar
Clemson, C. M. et al. An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles. Mol. Cell33, 717–726 (2009). ArticleCASPubMedPubMed Central Google Scholar
Quinodoz, S. & Guttman, M. Long noncoding RNAs: an emerging link between gene regulation and nuclear organization. Trends Cell Biol.24, 651–663 (2014). ArticleCASPubMedPubMed Central Google Scholar
Mohammad, F., Mondal, T., Guseva, N., Pandey, G. K. & Kanduri, C. Kcnq1ot1 noncoding RNA mediates transcriptional gene silencing by interacting with Dnmt1. Development137, 2493–2499 (2010). ArticleCASPubMed Google Scholar
Mancini-Dinardo, D., Steele, S. J., Levorse, J. M., Ingram, R. S. & Tilghman, S. M. Elongation of the Kcnq1ot1 transcript is required for genomic imprinting of neighboring genes. Genes Dev.20, 1268–1282 (2006). CAS Google Scholar
Pandey, R. R. et al. Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol. Cell32, 232–246 (2008). ArticleCASPubMed Google Scholar
Peters, A. H. et al. Partitioning and plasticity of repressive histone methylation states in mammalian chromatin. Mol. Cell12, 1577–1589 (2003). ArticleCASPubMed Google Scholar
Czermin, B. et al. Drosophila enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal Polycomb sites. Cell111, 185–196 (2002). ArticleCASPubMed Google Scholar
Mohammad, F. et al. Long noncoding RNA-mediated maintenance of DNA methylation and transcriptional gene silencing. Development139, 2792–2803 (2012). ArticleCASPubMed Google Scholar
Korostowski, L., Sedlak, N. & Engel, N. The Kcnq1ot1 long non-coding RNA affects chromatin conformation and expression of Kcnq1, but does not regulate its imprinting in the developing heart. PLoS Genet.8, e1002956 (2012). ArticleCASPubMedPubMed Central Google Scholar
Tripathi, V. et al. The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol. Cell39, 925–938 (2010). ArticleCASPubMedPubMed Central Google Scholar
Michalik, K. M. et al. Long noncoding RNA MALAT1 regulates endothelial cell function and vessel growth. Circ. Res.114, 1389–1397 (2014). ArticleCASPubMed Google Scholar
Ishii, N. et al. Identification of a novel non-coding RNA, MIAT, that confers risk of myocardial infarction. J. Hum. Genet.51, 1087–1099 (2006). ArticleCASPubMed Google Scholar
Ishizuka, A., Hasegawa, Y., Ishida, K., Yanaka, K. & Nakagawa, S. Formation of nuclear bodies by the lncRNA Gomafu-associating proteins Celf3 and SF1. Genes Cells19, 704–721 (2014). ArticleCASPubMedPubMed Central Google Scholar
Wang, K. et al. The long noncoding RNA CHRF regulates cardiac hypertrophy by targeting miR-489. Circ. Res.114, 1377–1388 (2014). ArticleCASPubMed Google Scholar
Wang, K. et al. CARL lncRNA inhibits anoxia-induced mitochondrial fission and apoptosis in cardiomyocytes by impairing miR-539-dependent PHB2 downregulation. Nat. Commun.5, 3596 (2014). ArticleCASPubMed Google Scholar
Bell, R. D. et al. Identification and initial functional characterization of a human vascular cell-enriched long noncoding RNA. Arterioscler. Thromb. Vasc. Biol.34, 1249–1259 (2014). ArticleCASPubMedPubMed Central Google Scholar
Grote, P. et al. The tissue-specific lncRNA Fendrr is an essential regulator of heart and body wall development in the mouse. Dev. Cell24, 206–214 (2013). ArticleCASPubMedPubMed Central Google Scholar
Aguilo, F., Zhou, M. M. & Walsh, M. J. Long noncoding RNA, polycomb, and the ghosts haunting INK4b-ARF-INK4a expression. Cancer Res.71, 5365–5369 (2011). ArticleCASPubMedPubMed Central Google Scholar
Consortium, C. A. D. et al. Large-scale association analysis identifies new risk loci for coronary artery disease. Nat. Genet.45, 25–33 (2013). ArticleCAS Google Scholar
Vausort, M., Wagner, D. R. & Devaux, Y. Long noncoding RNAs in patients with acute myocardial infarction. Circ. Res.115, 668–677 (2014). ArticleCASPubMed Google Scholar
Bochenek, G. et al. The large non-coding RNA ANRIL, which is associated with atherosclerosis, periodontitis and several forms of cancer, regulates ADIPOR1, VAMP3 and C11ORF10. Hum. Mol. Genet.22, 4516–4527 (2013). ArticleCASPubMed Google Scholar
Zhou, X., Chen, J. & Tang, W. The molecular mechanism of HOTAIR in tumorigenesis, metastasis, and drug resistance. Acta Biochim. Biophys. Sin. (Shanghai)46, 1011–1015 (2014). ArticleCAS Google Scholar
Liu, Y. et al. Expression profiling and ontology analysis of long noncoding RNAs in post-ischemic heart and their implied roles in ischemia/reperfusion injury. Gene543, 15–21 (2014). ArticleCASPubMed Google Scholar
Yang, K. C. et al. Deep RNA sequencing reveals dynamic regulation of myocardial noncoding RNAs in failing human heart and remodeling with mechanical circulatory support. Circulation129, 1009–1021 (2014). ArticleCASPubMedPubMed Central Google Scholar
Werber, M., Wittler, L., Timmermann, B., Grote, P. & Herrmann, B. G. The tissue-specific transcriptomic landscape of the mid-gestational mouse embryo. Development141, 2325–2330 (2014). ArticleCASPubMed Google Scholar
Zhang, L. et al. Identification of candidate long noncoding RNAs associated with left ventricular hypertrophy. Clin. Transl. Sci.http://dx.doi.org/10.1111/cts.12234.
Zangrando, J. et al. Identification of candidate long non-coding RNAs in response to myocardial infarction. BMC Genomics15, 460 (2014). ArticleCASPubMedPubMed Central Google Scholar
Yang, L. et al. ncRNA- and Pc2 methylation-dependent gene relocation between nuclear structures mediates gene activation programs. Cell147, 773–788 (2011). ArticleCASPubMedPubMed Central Google Scholar
Azzalin, C. M., Reichenbach, P., Khoriauli, L., Giulotto, E. & Lingner, J. Telomeric repeat containing RNA and RNA surveillance factors at mammalian chromosome ends. Science318, 798–801 (2007). ArticleCASPubMed Google Scholar
Porro, A. et al. Functional characterization of the TERRA transcriptome at damaged telomeres. Nat. Commun.5, 5379 (2014). ArticleCASPubMed Google Scholar
Abdelmohsen, K. et al. Senescence-associated lncRNAs: senescence-associated long noncoding RNAs. Aging Cell12, 890–900 (2013). ArticleCASPubMed Google Scholar
Bruneau, B. G. Signaling and transcriptional networks in heart development and regeneration. Cold Spring Harb. Perspect. Biol.5, a008292 (2013). ArticleCASPubMedPubMed Central Google Scholar
Ounzain, S. et al. Functional importance of cardiac enhancer-associated noncoding RNAs in heart development and disease. J. Mol. Cell. Cardiol.76, 55–70 (2014). ArticleCASPubMedPubMed Central Google Scholar
Wamstad, J. A. et al. Dynamic and coordinated epigenetic regulation of developmental transitions in the cardiac lineage. Cell151, 206–220 (2012). ArticleCASPubMedPubMed Central Google Scholar
Matkovich, S. J., Zhang, Y., Van Booven, D. J. & Dorn, G. W. 2nd. Deep mRNA sequencing for in vivo functional analysis of cardiac transcriptional regulators: application to Gαq. Circ. Res.106, 1459–1467 (2010). ArticleCASPubMedPubMed Central Google Scholar
Gupta, S. K., Piccoli, M. T. & Thum, T. Non-coding RNAs in cardiovascular ageing. Ageing Res. Rev.17, 79–85 (2014). ArticleCASPubMed Google Scholar
Zhang, B. et al. The lncRNA Malat1 is dispensable for mouse development but its transcription plays a _cis_-regulatory role in the adult. Cell Rep.2, 111–123 (2012). ArticleCASPubMedPubMed Central Google Scholar
Ratajczak, M. Z. Igf2-H19, an imprinted tandem gene, is an important regulator of embryonic development, a guardian of proliferation of adult pluripotent stem cells, a regulator of longevity, and a 'passkey' to cancerogenesis. Folia Histochem. Cytobiol50, 171–179 (2012). ArticleCASPubMed Google Scholar
Wang, G. et al. Zbtb7a suppresses prostate cancer through repression of a Sox9-dependent pathway for cellular senescence bypass and tumor invasion. Nat. Genet.45, 739–746 (2013). ArticleCASPubMedPubMed Central Google Scholar
Kossack, N. et al. Isolation and characterization of pluripotent human spermatogonial stem cell-derived cells. Stem Cells27, 138–149 (2009). ArticleCASPubMedPubMed Central Google Scholar
Lee, J. E., Bennett, C. F. & Cooper, T. A. RNase H-mediated degradation of toxic RNA in myotonic dystrophy type 1. Proc. Natl Acad. Sci. USA109, 4221–4226 (2012). ArticlePubMedPubMed Central Google Scholar
Liu, J. Y. et al. Pathogenic role of lncRNA-MALAT1 in endothelial cell dysfunction in diabetes mellitus. Cell Death Dis.5, e1506 (2014). ArticleCASPubMedPubMed Central Google Scholar
Wu, G. et al. LincRNA-p21 regulates neointima formation, vascular smooth muscle cell proliferation, apoptosis, and atherosclerosis by enhancing p53 activity. Circulation130, 1452–1465 (2014). ArticleCASPubMedPubMed Central Google Scholar
Kumarswamy, R. et al. Circulating long noncoding RNA, LIPCAR, predicts survival in patients with heart failure. Circ. Res.114, 1569–1575 (2014). ArticleCASPubMed Google Scholar
Kirchhof, P. et al. The continuum of personalized cardiovascular medicine: a position paper of the European Society of Cardiology. Eur. Heart J.35, 3250–3257 (2014). ArticleCASPubMedPubMed Central Google Scholar
Elashoff, M. R. et al. Development of a blood-based gene expression algorithm for assessment of obstructive coronary artery disease in non-diabetic patients. BMC Med. Genomics4, 26 (2011). ArticlePubMedPubMed Central Google Scholar
Li, D. et al. Transcriptome analysis reveals distinct patterns of long noncoding RNAs in heart and plasma of mice with heart failure. PLoS ONE8, e77938 (2013). ArticleCASPubMedPubMed Central Google Scholar
Lorenzen, J. M. et al. Circulating long noncoding RNA TapSAKI is a predictor of mortality in critically ill patients with acute kidney injury. Clin. Chem.61, 191–201 (2015). ArticleCASPubMed Google Scholar
Podlowski, S., Bramlage, P., Baumann, G., Morano, I. & Luther, H. P. Cardiac troponin I sense-antisense RNA duplexes in the myocardium. J. Cell. Biochem.85, 198–207 (2002). ArticleCASPubMed Google Scholar
Zolk, O., Solbach, T. F., Eschenhagen, T., Weidemann, A. & Fromm, M. F. Activation of negative regulators of the hypoxia-inducible factor (HIF) pathway in human end-stage heart failure. Biochem. Biophys. Res. Commun.376, 315–320 (2008). ArticleCASPubMed Google Scholar
Carrion, K. et al. The long non-coding HOTAIR is modulated by cyclic stretch and WNT/β-CATENIN in human aortic valve cells and is a novel repressor of calcification genes. PLoS ONE9, e96577 (2014). ArticleCASPubMedPubMed Central Google Scholar
Bokil, N. J., Baisden, J. M., Radford, D. J. & Summers, K. M. Molecular genetics of long QT syndrome. Mol. Genet. Metab.101, 1–8 (2010). ArticleCASPubMed Google Scholar
Tsuiji, H. et al. Competition between a noncoding exon and introns: Gomafu contains tandem UACUAAC repeats and associates with splicing factor-1. Genes Cells16, 479–490 (2011). ArticleCASPubMedPubMed Central Google Scholar
Ritter, O., Haase, H., Schulte, H. D., Lange, P. E. & Morano, I. Remodeling of the hypertrophied human myocardium by cardiac bHLH transcription factors. J. Cell. Biochem.74, 551–561 (1999). ArticleCASPubMed Google Scholar
Zhu, J. G. et al. Long noncoding RNAs expression profile of the developing mouse heart. J. Cell. Biochem.115, 910–918 (2014). ArticleCASPubMed Google Scholar